electrocardiographic imaging
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 77)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Luigi Pannone ◽  
Cinzia Monaco ◽  
Antonio Sorgente ◽  
Pasquale Vergara ◽  
Paul‐Adrian Calburean ◽  
...  

Background The rate of sudden cardiac death (SCD) in Brugada syndrome (BrS) is ≈1%/y. Noninvasive electrocardiographic imaging is a noninvasive mapping system that has a role in assessing BrS depolarization and repolarization abnormalities. This study aimed to analyze electrocardiographic imaging parameters during ajmaline test (AJT). Methods and Results All consecutive epicardial maps of the right ventricle outflow tract (RVOT‐EPI) in BrS with CardioInsight were retrospectively analyzed. (1) RVOT‐EPI activation time (RVOT‐AT); (2) RVOT‐EPI recovery time, and (3) RVOT‐EPI activation‐recovery interval (RVOT‐ARI) were calculated. ∆RVOT‐AT, ∆RVOT‐EPI recovery time, and ∆RVOT‐ARI were defined as the difference in parameters before and after AJT. SCD‐BrS patients were defined as individuals presenting a history of aborted SCD. Thirty‐nine patients with BrS were retrospectively analyzed and 12 patients (30.8%) were SCD‐BrS. After AJT, an increase in both RVOT‐AT [105.9 milliseconds versus 65.8 milliseconds, P <0.001] and RVOT‐EPI recovery time [403.4 milliseconds versus 365.7 milliseconds, P <0.001] was observed. No changes occurred in RVOT‐ARI [297.5 milliseconds versus 299.9 milliseconds, P =0.7]. Before AJT no differences were observed between SCD‐BrS and non SCD‐BrS in RVOT‐AT, RVOT‐EPI recovery time, and RVOT‐ARI ( P =0.9, P =0.91, P =0.86, respectively). Following AJT, SCD‐BrS patients showed higher RVOT‐AT, higher ∆RVOT‐AT, lower RVOT‐ARI, and lower ∆RVOT‐ARI ( P <0.001, P <0.001, P =0.007, P =0.002, respectively). At the univariate logistic regression, predictors of SCD‐BrS were the following: RVOT‐AT after AJT (specificity: 0.74, sensitivity 1.00, area under the curve 0.92); ∆RVOT‐AT (specificity: 0.74, sensitivity 0.92, area under the curve 0.86); RVOT‐ARI after AJT (specificity 0.96, sensitivity 0.58, area under the curve 0.79), and ∆RVOT‐ARI (specificity 0.85, sensitivity 0.67, area under the curve 0.76). Conclusions Noninvasive electrocardiographic imaging can be useful in evaluating the results of AJT in BrS.


2021 ◽  
Vol 28 (4) ◽  
pp. 57-61
Author(s):  
I. A. Taimasova ◽  
M. V. Yashkov ◽  
E. A. Artyukhina ◽  
A. Sh. Revishvili

The article presents a clinical case of catheter treatment of hemodynamically unstable ischemic ventricular tachycardia originating from interventricular septum using electrocardiographic imaging and high-density endocardial substrate mapping.


2021 ◽  
Vol 10 (3) ◽  
pp. 211-217
Author(s):  
Adam J Graham ◽  
Richard J Schilling

Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms. This calculation is achieved by solving the inverse problem and allows activation times to be calculated from a single beat. The technology was initially pioneered in the US using an experimental torso-shaped tank. Accuracy from studies in humans has varied. Early data was promising, with more recent work suggesting only moderate accuracy when reproducing cardiac activation. Despite these limitations, the system has been successfully used in pioneering work with non-invasive cardiac radioablation to treat ventricular arrhythmia. This suggests that the resolution may be sufficient for treatment of large target areas. Although untested in a well conducted clinical study it is likely that it would not be accurate enough to guide more discreet radiofrequency ablation.


2021 ◽  
Author(s):  
Job Stoks ◽  
Bianca van Rees ◽  
Uyen Chau Nguyen ◽  
Ralf Peeters ◽  
Paul GA Volders ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document