alloy material
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 65)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 1049 ◽  
pp. 39-44
Author(s):  
Andrey Chumaevskii ◽  
Denis Gurianov ◽  
Anastasiya Gusarova ◽  
Anna Zykova ◽  
Aleksandr Panfilov ◽  
...  

Model research tests of plastic deformation, fragmentation and flow of aluminum alloy material of Al-Mg-Sc-Zr system under high loaded friction in pair with a steel counterbody of a complex shape and comparison of the obtained result with the structure formed by friction stir welding have been carried out. The conducted studies show that the structure formed by extrusion of the material from the friction zone and its compaction in the channel of the counterbody is, in general, close in structure to the structure formed by friction stir welding of similar material. The distinguishing features of the structure formed in the model experiments on friction include the introduction into the stirring zone of material with deformed large-crystal structure, increased grain size of the stirring zone, the presence of defects and differences in the geometry of the stirring zone.


2022 ◽  
Vol 51 ◽  
pp. 101488
Author(s):  
Gongzhuang Peng ◽  
Youzhao Sun ◽  
Qian Zhang ◽  
Quan Yang ◽  
Weiming Shen

2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Shirong Zhu ◽  
Lu Liu ◽  
Qiaoli Lin

As an emerging alloy material, high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties. In this work, a low melting point GaInSnBiZn high-entropy alloy was designed based on Miedema model, and its surface tension was measured by the continuous pendant-drop method. The results show that the intrinsic surface tension of GaInSnBiZn high-entropy alloy at 80 °C is 545±5 mN/m, and the surface tension of the liquid alloy is significantly reduced by the formation of surface oxide film. The surface tension of GaInSnBiZn high-entropy alloy was analyzed by using theoretical models (Guggenheim model, GSM (general solution) model and Butler model), and the thermodynamic characteristics of the surface tension formation were further verified by combining with thermodynamic calculations, among which the calculated results of Butler model were in good agreement with the experimental data. Meanwhile, it is found that the surface concentration of Bi in the alloy is much larger than the nominal concentration of its bulk phase, which contributes the most to the surface tension of the alloy, however, it contributes the least to the entropy of the alloy formation in combination with the Butler model.


Author(s):  
Shihui Xiong ◽  
Jingcheng Wang ◽  
Yuan Li ◽  
Yuquan Wen ◽  
Yujun Wu ◽  
...  

To solve the problem of large operating noise of existing pyrotechnic separation devices, a new low-noise pyrotechnic separation device is designed by changing the utilisation mode of pyrotechnic separation, using micro gas pyrotechnic as heat sources, and shape memory alloy material to convert heat energy into mechanical energy. The results showed that the separation time was 1.526 s when the preload was 20 kN, and the maximum shock response was 319 G (2268 Hz) for 100 Hz–100 kHz. When used underwater, the maximum sound pressure level is 106.9 dB at 12,698 Hz and 98.5 dB from 10 Hz–5 kHz. Compared with a conventional separation nut, the frequency band sound pressure level can be reduced by more than 70 dB, realising underwater low-noise separation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuting Luo ◽  
Zhenyu Wang ◽  
Xuelei Li ◽  
Xinyu Liu ◽  
Haidong Wang ◽  
...  

AbstractAll-solid-state lithium-based batteries with inorganic solid electrolytes are considered a viable option for electrochemical energy storage applications. However, the application of lithium metal is hindered by issues associated with the growth of mossy and dendritic Li morphologies upon prolonged cell cycling and undesired reactions at the electrode/solid electrolyte interface. In this context, alloy materials such as lithium-indium (Li-In) alloys are widely used at the laboratory scale because of their (electro)chemical stability, although no in-depth investigations on their morphological stability have been reported yet. In this work, we report the growth of Li-In dendritic structures when the alloy material is used in combination with a Li6PS5Cl solid electrolyte and Li(Ni0.6Co0.2Mn0.2)O2 positive electrode active material and cycled at high currents (e.g., 3.8 mA cm−2) and high cathode loading (e.g., 4 mAh cm−2). Via ex situ measurements and simulations, we demonstrate that the irregular growth of Li-In dendrites leads to cell short circuits after room-temperature long-term cycling. Furthermore, the difference between Li and Li-In dendrites is investigated and discussed to demonstrate the distinct type of dendrite morphology.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Maria Beatriz Bello Taborda ◽  
Gabriela Sumie Yaguinuma Gonçalves ◽  
Cecília Alves de Sousa ◽  
Wirley Gonçalves Assunção

Purpose. The aim was to evaluate the effect of different metallic alloys used in the manufacture of retention screws for universal cast to long abutment (UCLA) abutments for external hexagon (HE) and Morse taper (MT) connection implants, as well as of mechanical cycling on torque maintenance and fracture resistance through electromechanical fatigue testing by mastication followed by compression testing. Methods. Sixty implants were used, 30 MT and 30 HE, with their respective titanium UCLA abutments and retention screws of 5 different materials (n = 6): Ti cp grade 2, Ti cp grade 4, Ti cp grade 4 hard, Ti grade 5—Ti6Al4V and surgical steel (DSP® Biomedical). The assemblies were positioned in an electromechanical masticatory fatigue testing machine. The fracture strength test was performed by compression testing in a universal testing machine EMICDL-200. Results. The cycled screws and new screws of each alloy group for each connection type were evaluated, obtaining the maximum force (FM), in order to verify the effect of mechanical cycling. The data were tabulated and submitted to appropriate statistical analysis (α = 0.05). Conclusion. It was concluded that for the MT, the alloy with the best performance was steel, both in the maintenance of torque and in the compression test, and cycling negatively influenced the maintenance of preload for this connection. The alloy material did not influence torque maintenance for HE. The new screws that were subjected to EMIC showed higher strength. The alloy with the lowest strength was Ti grade 2.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012011
Author(s):  
Yuan Meng ◽  
Wanbin Ren

Abstract Electrical connector is an essential accessory component for electrical and electronic interconnection circuit. In order to investigate the degradation behavior of electrical connector, a series of repetitive mechanical insertion and withdrawal operations of electrical connector have been carried out. The results indicate that there is an increasing trend in insertion/extraction force in the initial stage. Afterwards, it becomes a gradually decreasing trend attributed to the mechanical wear of the contact components. In addition, the oxidative wear of substrate copper alloy material causes the fluctuation phenomenon of contact resistance. The relevant mathematic models for insertion/extraction force and contact resistance calculation are presented to research the dynamic insertion/extraction process. Finally, the degradation behavior and associated physical mechanisms are proposed by analysing the laser confocal photographs and parameter waveforms comparison.


2021 ◽  
Vol 878 (1) ◽  
pp. 012072
Author(s):  
B Budiarto ◽  
T D Kurniawan

Abstract Research on the effect of the vacuum system on porous product defects and microstructure on the ADC-12 aluminum alloy material with cold chamber die casting machine has been carried out. In the injection process in cold chamber die casting, the aluminum material commonly used is namely ADC-12. The ADC-12 aluminum alloy has better resistance to corrosion, is lightweight, has ease of casting, good mechanical properties, and dimensional stability. The purpose of this study is to compare the vacuum system with overflow system using ADC-12 aluminum alloy material with observed parameters are porosity, trapped air pressure, hot spot level, hardness level of Vickers Hardness, XRD analysis, and microstructure analysis with Light Optical Microscope (LOM). The results of the analysis using the Magma flow software, the vacuum system is better than the overflow system in terms of porosity and product yield, which is influenced by the amount of air trapped and the hot spot level. The level of hardness in a product with a vacuum system is better than a product with an overflow system. The average hardness in the vacuum system is 162,235 while in the overflow system is 147,615. Thus, the use of a vacuum system can increase the level of hardness in products by around 9%. With the change in usage from the overflow system to the vacuum system, it shows an increase in dislocation density followed by an increase in lattice strain and a decrease in the level of crystal size of the product.


Sign in / Sign up

Export Citation Format

Share Document