high frequency variability
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
pp. 1-61
Author(s):  
Marcia B. Baker

Abstract We analyze observations and develop a hierarchy of models to understand heat waves – long-lived, high temperature anomalies – and extremely high daily temperatures during summertime in the continental extratropics. Throughout the extratropics, the number of extremely hot days found in the three hottest months is much greater than expected from a random, single-process model. Furthermore, in many locations the temperature skewness switches from negative on daily timescales to positive on monthly timescales (or shifts from positive on daily timescales to higher positive values on monthly timescales) in ways that cannot be explained by averaging alone. These observations motivate a hierarchy of models of the surface energy and moisture budgets that we use to illuminate the physics responsible for daily and monthly averaged temperature variability. Shortwave radiation fluctuations drive much of the variance and the negative skewness found in daily temperature observations. On longer timescales, precipitation-induced soil moisture anomalies are important for temperature variability and account for the shift toward positive skewness in monthly averaged temperature. Our results demonstrate that long-lived heat waves are due to (i) the residence time of soil moisture anomalies and (ii) a nonlinear feedback between temperature and evapotranspiration via the impact of temperature on vapor pressure deficit. For most climates, these two processes give rise to infrequent, long-lived heat waves in response to randomly distributed precipitation forcing. Combined with our results concerning high-frequency variability, extremely hot days are seen to be state-independent filigree driven by shortwave variability acting on top of longer-lived, moisture driven heat waves.


Author(s):  
Camila Bertoletti Carpenedo ◽  
José Leandro Pereira Silveira Campos ◽  
Tércio Ambrizzi ◽  
Ricardo Burgo Braga

2021 ◽  
Author(s):  
Mariano Mendez ◽  
Konstantinos Karpouzas ◽  
Federico Garcia ◽  
Liang Zhang ◽  
Yuexin Zhang ◽  
...  

Abstract GRS 1915+1051 was the first stellar-mass black-hole in our Galaxy to display a superluminal radio jet2, similar to those observed in active galactic nuclei with a supermassive black hole at the centre3. It has been proposed that the radio emission in GRS 1915+105 is fed by instabilities in the accretion disc4 by which the inner parts of the accretion flow is ejected in the jet5–7. Here we show that there is a significant correlation between: (i) the radio flux, coming from the jet, and the flux of the iron emission line, coming from the disc and, (ii) the temperature of the corona that produces the high-energy part of the X-ray spectrum via inverse Compton scattering and the amplitude of a high-frequency variability component coming from the innermost part of the accretion flow. At the same time, the radio flux and the flux of the iron line are strongly anti-correlated with the temperature of the X-ray corona and the amplitude of the high-frequency variability component. These correlations persist over ~10 years, despite the highly variable X-ray and radio properties of the source in that period8,9. Our findings provide, for the first time, incontrovertible evidence that the energy that powers this black-hole system can be directed either to the X-ray corona or the jet. When this energy is used to power the corona, raising its temperature, there is less energy left to fuel the jet and the radio flux drops, and vice versa. These facts, plus the modelling of the variability in this source show conclusively that in GRS 1915+105 the X-ray corona morphs into the jet.


Author(s):  
M L Parker ◽  
W N Alston ◽  
L Härer ◽  
Z Igo ◽  
A Joyce ◽  
...  

Abstract We examine archival XMM-Newton data on the extremely variable narrow-line Seyfert 1 (NLS1) active galactic nucleus (AGN) 1H 0707-495. We construct fractional excess variance (Fvar) spectra for each epoch, including the recent 2019 observation taken simultaneously with eROSITA. We explore both intrinsic and environmental absorption origins for the variability in different epochs, and examine the effect of the photoionised emission lines from outflowing gas. In particular, we show that the unusual soft variability first detected by eROSITA in 2019 is due to a combination of an obscuration event and strong suppression of the variance at 1 keV by photoionised emission, which makes the variance below 1 keV appear more extreme. We also examine the variability on long timescales, between observations, and find that it is well described by a combination of intrinsic variability and absorption variability. We suggest that the typical extreme high frequency variability which 1H 0707-495 is known for is intrinsic to the source, but the large amplitude, low frequency variability that causes prolonged low-flux intervals is likely dominated by variable low-ionisation, low velocity absorption.


2021 ◽  
Vol 8 ◽  
Author(s):  
Catalina Aguirre ◽  
René Garreaud ◽  
Lucy Belmar ◽  
Laura Farías ◽  
Laura Ramajo ◽  
...  

The ocean off south-central Chile is subject to seasonal upwelling whose intensity is mainly controlled by the latitudinal migration of the southeast Pacific subtropical anticyclone. During austral spring and summer, the mean flow is equatorward favoring coastal upwelling, but periods of strong southerly winds are intermixed with periods of relaxed southerlies or weak northerly winds (downwelling favorable). This sub-seasonal, high-frequency variability of the coastal winds results in pronounced changes in oceanographic conditions and air-sea heat and gas exchanges, whose quantitative description has been limited by the lack of in-situ monitoring. In this study, high frequency fluctuations of meteorological, oceanographic and biogeochemical near surface variables were analyzed during two consecutive upwelling seasons (2016–17 and 2017–18) using observations from a coastal buoy located in the continental shelf off south-central Chile (36.4°S, 73°W), ∼10 km off the coast. The radiative-driven diel cycle is noticeable in meteorological variables but less pronounced for oceanographic and biogeochemical variables [ocean temperature, nitrate (NO3−), partial pressure of carbon dioxide (pCO2sea), pH, dissolved oxygen (DO)]. Fluorescence, as a proxy of chlorophyll-a, showed diel variations more controlled by biological processes. In the synoptic scale, 23 active upwelling events (strong southerlies, lasting between 2 and 15 days, 6 days in average) were identified, alternated with periods of relaxed southerlies of shorter duration (4.5 days in average). Upwelling events were related to the development of an atmospheric low-level coastal jet in response to an intense along-shore pressure gradient. Physical and biogeochemical surface seawater properties responded to upwelling favorable wind stress with approximately a 12-h lag. During upwelling events, SST, DO and pH decrease, while NO3−, pCO2sea, and air-sea fluxes increases. During the relaxed southerly wind periods, opposite tendencies were observed. The fluorescence response to wind variations is complex and diverse, but in many cases there was a reduction in the phytoplankton biomass during the upwelling events followed by higher values during wind relaxations. The sub-seasonal variability of the coastal ocean characterized here is important for biogeochemical and productivity studies.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


2021 ◽  
Author(s):  
Alice Portal ◽  
Claudia Pasquero ◽  
Fabio D'Andrea ◽  
Paolo Davini ◽  
Mostafa Hamouda

<p>Long term projections of the Northern Hemisphere winter climate show an overall increase of surface temperatures that is particularly amplified at Arctic latitudes. On top of this, projections agree in predicting a faster temperature increase on land than on sea surface, therefore a reduced winter land-sea contrast in the mid latitudes. Despite the robustness of this feature in climate projections, the response of the atmospheric system to a strongly reduced winter land-sea contrast has been scarcely investigated. Here, we study how it affects the low and high frequency variability in the extratropics using a simplified GCM, with a focus on the Atlantic and Pacific jets. Moreover, different sea surface temperatures are applied to the North Atlantic and North Pacific basins in order to simulate the presence of a differential warming, as in the well-known scenario of a North-Atlantic warming hole. </p>


Author(s):  
Haiyuan Yang ◽  
Lixin Wu ◽  
Ping Chang ◽  
Bo Qiu ◽  
Zhao Jing ◽  
...  

AbstractUsing eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air-sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air-sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air-sea heat fluxes has little influence on geostrophic mesoscale eddies.


2020 ◽  
Vol 33 (21) ◽  
pp. 9103-9127
Author(s):  
H. Annamalai

AbstractWith the recognition that equatorial Pacific precipitation anomalies are fundamental to global teleconnections during ENSO winters, the present research applies vertically integrated moist static energy (MSE) budget analysis to historical simulations of CMIP5 models. Process-based assessment is carried out to understand if the models capture the differing processes that account for regional precipitation anomalies along the equatorial Pacific and to isolate a few leading processes that account for the diversified precipitation response to similar SST forcing and vice versa. To assess SST biases in CMIP5, analysis is also carried out in AMIP5 solutions. Diagnostics reveal that models have limitations in representing the “sign” of MSE sources and sinks and, even if they do, compensating errors dominate the budget. The diverse response in precipitation depends on model parameterizations that determine anomalous net radiative flux divergence in the column, free troposphere moisture, and MSE export out of the column, although these processes are not independent. Diagnostics derived from AMIP5 solutions support the findings from CMIP5. The implication is that biases in representing any one of these processes are expected to imprint on others, acknowledging the tight connections among moisture, convection, and radiation. CMIP5 models have limitations in representing the basic states in SST and precipitation over the Niño-3.4 region, and the different convective regimes over the equatorial central and eastern Pacific regions with implications for ENSO. Study limitations are that MSE sources/sinks depend on parameterizations and their interactions, making it difficult to isolate one particular process for attribution. Budgets estimated from monthly anomalies do not capture contributions from high-frequency variability that are vital in closing the budgets.


Sign in / Sign up

Export Citation Format

Share Document