transmission geometry
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
pp. 096703352110572
Author(s):  
Nicholas T Anderson ◽  
Kerry B Walsh

Short wave near infrared (NIR) spectroscopy operated in a partial or full transmission geometry and a point spectroscopy mode has been increasingly adopted for evaluation of quality of intact fruit, both on-tree and on-packing lines. The evolution in hardware has been paralleled by an evolution in the modelling techniques employed. This review documents the range of spectral pre-treatments and modelling techniques employed for this application. Over the last three decades, there has been a shift from use of multiple linear regression to partial least squares regression. Attention to model robustness across seasons and instruments has driven a shift to machine learning methods such as artificial neural networks and deep learning in recent years, with this shift enabled by the availability of large and diverse training and test sets.


2021 ◽  
Author(s):  
Gergő Krizsán ◽  
Zoltan Tibai ◽  
Gyorgy Toth ◽  
Priyo Nugraha ◽  
Gabor Almasi ◽  
...  

2020 ◽  
Vol 217 (22) ◽  
pp. 2070062
Author(s):  
Caroline E. Reilly ◽  
Guillaume Lheureux ◽  
Clayton Cozzan ◽  
Emet Zeitz ◽  
Tal Margalith ◽  
...  

2020 ◽  
Vol 217 (22) ◽  
pp. 2000391
Author(s):  
Caroline E. Reilly ◽  
Guillaume Lheureux ◽  
Clayton Cozzan ◽  
Emet Zeitz ◽  
Tal Margalith ◽  
...  

2020 ◽  
Vol 17 (169) ◽  
pp. 20200216 ◽  
Author(s):  
Pierre Gueriau ◽  
Solenn Réguer ◽  
Nicolas Leclercq ◽  
Camila Cupello ◽  
Paulo M. Brito ◽  
...  

Fossils, including those that occasionally preserve decay-prone soft tissues, are mostly made of minerals. Accessing their chemical composition provides unique insight into their past biology and/or the mechanisms by which they preserve, leading to a series of developments in chemical and elemental imaging. However, the mineral composition of fossils, particularly where soft tissues are preserved, is often only inferred indirectly from elemental data, while X-ray diffraction that specifically provides phase identification received little attention. Here, we show the use of synchrotron radiation to generate not only X-ray fluorescence elemental maps of a fossil, but also mineralogical maps in transmission geometry using a two-dimensional area detector placed behind the fossil. This innovative approach was applied to millimetre-thick cross-sections prepared through three-dimensionally preserved fossils, as well as to compressed fossils. It identifies and maps mineral phases and their distribution at the microscale over centimetre-sized areas, benefitting from the elemental information collected synchronously, and further informs on texture (preferential orientation), crystallite size and local strain. Probing such crystallographic information is instrumental in defining mineralization sequences, reconstructing the fossilization environment and constraining preservation biases. Similarly, this approach could potentially provide new knowledge on other (bio)mineralization processes in environmental sciences. We also illustrate that mineralogical contrasts between fossil tissues and/or the encasing sedimentary matrix can be used to visualize hidden anatomies in fossils.


2020 ◽  
Vol 1004 ◽  
pp. 63-68
Author(s):  
Rafael Dalmau ◽  
Jeffrey Britt ◽  
Hao Yang Fang ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
...  

Large diameter aluminum nitride (AlN) substrates, up to 50 mm, were manufactured from single crystal boules grown by physical vapor transport (PVT). Synchrotron-based x-ray topography (XRT) was used to characterize the density, distribution, and type of dislocations. White beam topography images acquired in transmission geometry were used to analyze basal plane dislocations (BPDs) and low angle grain boundaries (LAGBs), while monochromatic beam, grazing incidence images were used to analyze threading dislocations. Boule diameter expansion, without the introduction of LAGBs around the periphery, was shown. A 48 mm substrate with a uniform threading dislocation density below 7.0 x 102 cm-2 and a BPD of 0 cm-2, the lowest dislocation densities reported to date for an AlN single crystal this size, was demonstrated.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 495 ◽  
Author(s):  
Kirill Kuznetsov ◽  
Aleksey Klochkov ◽  
Andrey Leontyev ◽  
Evgeniy Klimov ◽  
Sergey Pushkarev ◽  
...  

The terahertz wave generation by spiral photoconductive antennas fabricated on low-temperature In0.5Ga0.5As films and In0.5Ga0.5As/In0.5Al0.5As superlattices is studied by the terahertz time-domain spectroscopy method. The structures were obtained by molecular beam epitaxy on GaAs and InP substrates with surface crystallographic orientations of (100) and (111)A. The pump-probe measurements in the transmission geometry and Hall effect measurements are used to characterize the properties of LT-InGaAs and LT-InGaAs/InAlAs structures. It is found that the terahertz radiation power is almost four times higher for LT-InGaAs samples with the (111)A substrate orientation as compared to (100). Adding of LT-InAlAs layers into the structure with (111)A substrate orientation results in two orders of magnitude increase of the structure resistivity. The possibility of creating LT-InGaAs/InAlAs-based photoconductive antennas with high dark resistance without compensating Be doping is demonstrated.


2020 ◽  
Vol 53 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Hao Liu ◽  
Zhuo Li ◽  
Antonin Grenier ◽  
Gabrielle E. Kamm ◽  
Liang Yin ◽  
...  

Operando studies that probe how electrochemical reactions propagate through a battery provide valuable feedback for optimizing the electrode architecture and for mitigating reaction heterogeneity. Transmission-geometry depth-profiling measurements carried out with the beam directed parallel to the battery layers – in a radial geometry – can provide quantitative structural insights that resolve depth-dependent reaction heterogeneity which are not accessible from conventional transmission measurements that traverse all battery layers. However, these spatially resolved measurements are susceptible to aberrations that do not affect conventional perpendicular-beam studies. Key practical considerations that can impact the interpretation of synchrotron depth-profiling studies, which are related to the signal-to-noise ratio, cell alignment and lateral heterogeneity, are described. Strategies to enable accurate quantification of state of charge during rapid depth-profiling studies are presented.


Sign in / Sign up

Export Citation Format

Share Document