carcinoma cell lines
Recently Published Documents


TOTAL DOCUMENTS

2890
(FIVE YEARS 295)

H-INDEX

88
(FIVE YEARS 7)

2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Olaia Martínez-Iglesias ◽  
Ivan Carrera ◽  
Vinogran Naidoo ◽  
Ramón Cacabelos

Novel and effective chemotherapeutic agents are needed to improve cancer treatment. Epidrugs are currently used for cancer therapy but also exhibit toxicity. Targeting the epigenetic apparatus with bioproducts may aid cancer prevention and treatment. To determine whether the lipoprotein marine extract AntiGan shows epigenetic and antitumor effects, cultured HepG2 (hepatocellular carcinoma) and HCT116 (colorectal carcinoma) cell lines were treated with AntiGan (10, 50, 100, and to 500 µg/mL) for 24 h, 48 h, and 72 h. AntiGan (10 µg/mL) reduced cell viability after 48 h and increased Bax expression; AntiGan (10 and 50 µg/mL) increased caspase-3 immunoreactivity in HepG2 and HCT116 cells. AntiGan (10 and 50 µg/mL) attenuated COX-2 and IL-17 expression in both cell lines. AntiGan (10 µg/mL) increased 5mC levels in both cell types and reduced DNMT1 and DNMT3a expression in these cells. AntiGan (10 and 50 µg/mL) promoted DNMT3a immunoreactivity and reduced SIRT1 mRNA expression in both cell types. In HCT116 cells treated with AntiGan (10 µg/mL), SIRT1 immunoreactivity localized to nuclei and the cytoplasm; AntiGan (50 µg/mL) increased cytoplasmic SIRT1 localization in HCT116 cells. AntiGan is a novel antitumoral bioproduct with epigenetic properties (epinutraceutical) for treating liver and colorectal cancer.


Author(s):  
Wenwen Qi ◽  
Fangyuan Zhu ◽  
Min Wang ◽  
Zhenxiao Teng ◽  
Runtong Xu ◽  
...  

Paris saponin has shown great therapeutic value in cancer therapy. We used isolated Paris saponin II (PSII), an active component of Paris saponin, and demonstrated its antitumor effect on human head and neck squamous cell carcinoma cell lines. Additionally, we investigated its mechanisms of action in vivo by establishing a xenograft mouse model. The results showed that PSII had presented strong anticancer effects on both hypopharyngeal malignant tumor cell lines (FaDu) and laryngeal carcinoma cell lines (Tu212 and Tu686). In addition, we successfully isolated and cultured the head and neck squamous stem cells and the primary fibroblasts to perform metabonomics studies. The results showed that RPII remarkably decreased energy metabolism, and type III nitric oxide synthase 3 (NOS3) may be a target to block tumor growth. Furthermore, we found that PSII inhibited HNSCC proliferation and metastasis by inhibiting the nitric oxide metabolic pathway. Overall, these results demonstrated that PSII is a potent anticancer agent, and the metabonomics analysis is a valuable tool to investigate and establish the antitumor effects of traditional Chinese medicines.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2184
Author(s):  
Enas Alaa El-din Abd El-aziz ◽  
Sherif Farouk Elgayar ◽  
Fatma M. Mady ◽  
Mohammed A. S. Abourehab ◽  
Omiya Ali Hasan ◽  
...  

Purpose: Development of pharmaceutical dosage forms of natural products has gained great interest recently. Propolis is a natural product with various active compounds and multiple pharmacological activities. Its resinous nature and low bioavailability were obstacles in the optimum use of this magnificent natural product. Aim: This study evaluates the effect of using liposomes as a drug delivery system on the enhancement of the cytotoxic effect of propolis on squamous cell carcinoma cell lines (Hep-2) of head and neck. Methods: An optimized liposomal formulation of propolis was prepared using the conventional thin film hydration method 1, 2. The prepared (Hep-2) cell line was treated with different concentrations of propolis and optimized propolis liposomes for 24 h. The effect of both propolis and propolis liposomes on cell line was investigated using MTT assay, cytological examination, and nuclear morphometric analysis. The effect of the drugs on the cell apoptosis was evaluated using Annexin V. Results: The findings revealed that both propolis and propolis liposomes have a cytotoxic effect on Hep-2 cell line through induction of apoptosis. The effect was dose dependent. However, a statistically significant enhancement in propolis-mediated apoptosis on Hep-2 cells was elucidated due to encapsulation within the prepared liposomes. Conclusion: Liposome is a powerful tool for enhancing the cytotoxicity of propolis against Hep-2 cell line.


Author(s):  
Christopher J. Pinard ◽  
Samuel E. Hocker ◽  
Andrew C. Poon ◽  
Jordon M. Inkol ◽  
Arata Matsuyama ◽  
...  

2021 ◽  
Author(s):  
Othello Del Rosario ◽  
Karthik Suresh ◽  
Medha Kallem ◽  
Gayatri Singh ◽  
Anika Shah ◽  
...  

Non-small cell lung cancers demonstrate intrinsic resistance to cell death even in response to chemotherapy. Previous work suggested that defective nuclear translocation of active caspase 3 may play a role in resistance to cell death. Separately, our group has identified that mitogen activated protein kinase activated protein kinase 2 (MK2) is required for nuclear translocation of active caspase 3 in the execution of apoptosis. This study demonstrates a relatively low expression of MK2 in non-small cell lung carcinoma cell lines compared to small cell carcinoma cell lines. Further, overexpression of MK2 in non-small cell lung carcinoma cell lines results in increased caspase 3 activity and caspase 3 mediated cell death. Higher MK2 transcript levels were observed in patients with earlier-stage non-small cell lung cancer. Higher expression of MK2 is associated with better survival in patients with early stage non-small cell lung cancer across two independent clinical datasets. Using data sets spanning multiple cancer types, we observed improved survival with higher MK2 expression was unique to lung adenocarcinoma. Mechanistically, MK2 promotes nuclear translocation of caspase 3 leading to PARP1 cleavage and execution of cell death. While MK2 can directly phosphorylate caspase 3, neither phosphorylation status of caspase 3 nor the kinase activity of MK2 impacts caspase 3 activation, nuclear translocation and execution of cell death. Rather, a non-kinase function of MK2, specifically trafficking via its nuclear localization sequence, is required for caspase 3 mediated cell death. In summary this study highlights the importance of a non-enzymatic function of MK2 in the execution of apoptosis, which may be leveraged in the adjunctive treatment of NSCLC or other conditions where regulation of apoptosis is crucial.


2021 ◽  
Vol 44 (12) ◽  
pp. 1878-1885
Author(s):  
Yoshie Tsujiya ◽  
Ai Hasegawa ◽  
Motohiro Yamamori ◽  
Noboru Okamura

Sign in / Sign up

Export Citation Format

Share Document