diphenyltetrazolium bromide
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 171)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2022 ◽  
Vol 8 (1) ◽  
pp. 185-191
Author(s):  
Mahesh Kumar D

Background: Silver Nanoparticles are extensively studied by the scientific community for therapeutic applications. With respect to the fundamental pillars of bioethics “Primum non nocere” equal emphasis should be given to evaluate the toxicological perspectives of Silver nanoparticles. This study aims at evaluating the InVitro cytotoxic effects of Silver nanoparticles synthesized using hesperidin. Aim: To study the In Vitro cytotoxicity of silver nanoparticles on PBMC cells using (3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Methods: Synthesized silver nanoparticles at various concentrations are incubated with peripheral blood mononuclear cells (PBMC). After 24 hours MTT is added to the mixture to evaluate the cell viability post incubation. Yellow MTT (a tetrazole) which is reduced to purple formazan in the mitochondria of living cells. The absorbance of this colored solution can be quantified by measuring at 570 nm by a spectrophotometer. This reduction takes place only when mitochondrial reductase enzymes are active, and therefore conversion can be directly related to the number of viable (living) cells. Results: ?.Conclusion: Silver Nanoparticles do not exhibit any significant cytotoxicity on PBMCs and also there were no dose dependent trends in the results.


2022 ◽  
pp. 1-14
Author(s):  
Li-Na Zhang ◽  
Meng-Jie Li ◽  
Ying-Hui Shang ◽  
Yun-Ru Liu ◽  
Huang Han-Chang ◽  
...  

Background: Alzheimer’s disease (AD) characterized by neurofibrillary tangles caused by hyperphosphorylated tau is the most common cause of dementia. Zeaxanthin (Zea), derived from fruits and vegetables, may reduce the risk of AD. Endoplasmic reticulum stress (ERS) might cause memory impairment in AD. Objective: Here, we studied protective role of Zea on the relationship among ERS, activity of glycogen synthase kinase 3β (GSK-3β, tau phosphorylated kinase), and p-Tau (Ser 396 and Thr 231). Methods: The results were obtained in non-RA and RA group by using different treatment, such as 9-cis-retinoic acid (RA), TM (ERS inducer), Zea, 4-PBA (ERS inhibitor), and SB216763 (GSK-3β inhibitor). The methods included flow cytometry and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] for the detections of cell cycle and cell viability and western blot as a third measure of proteins in relation to ERS and tau phosphorylation. We have collected and analyzed all the data that suggested application of drugs for the treatment in non-RA and RA group. Results: Zea displays its protection on TM-induced cell injury, upregulation of GRP78 expression, and change of GSK-3β activity and tau phosphorylation when 4-PBA and SB216763 interfere with the process. Conclusion: These studies indicated that Zea is in vicious circle in ERS, GSK-3β, and tau phosphorylation, and further reflect its potential value in AD.


Author(s):  
Guilherme Passarini ◽  
Amália Ferreira ◽  
Leandro Moreira-Dill ◽  
Fernando Zanchi ◽  
Aurileya de Jesus ◽  
...  

Malaria is responsible for thousands of deaths each year. Currently, artemisinin combination therapy (ACT) is used as first-choice medication against the disease. However, the emergence of resistant strains prompts the search for alternative compounds. The present study aimed to investigate the antiplasmodial activities of natural triterpenes (compounds 1 and 2), and semisynthetic derivatives 1a, 1b, 1c, and 1d. Antiplasmodial assays were carried out using the SYBR Green technique, whereas cytotoxicity was evaluated by the MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) method. Hemolytic assays were performed on human erythrocytes. An in silico analysis of the compounds against PfENR (Plasmodium falciparum 2-trans-enoyl-reductase) was carried out by molecular docking. Experiments with 1, and its derivatives against P. falciparum showed that 1a was very similar in terms of biological activity to compound 1 (half maximal inhibitory concentration (IC50) ca. 4 μM), whereas 1b, 1c, and 1d had reduced antiplasmodial activities (IC50 between 8-103 μM). The selectivity indexes of 1 and 1d for HepG2, and Vero cells were > 10. Docking results partially agreed with the in vitro experiments, with 1 and 1c having the best and worst affinities with PfENR, respectively. In conclusion, the results showed that 1 and 1d may serve as biotechnological tools in the development of antimalarial drugs.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Cheng-Han Chen ◽  
Yu-Ting Tsao ◽  
Po-Ting Yeh ◽  
Yu-Hsiang Liao ◽  
Yi-Tzu Lee ◽  
...  

Early detection of microorganisms is essential for the management of infectious diseases. However, this is challenging, as traditional culture methods are labor-intensive and time-consuming. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-phenazine methosulfate (MTT-PMS) assay has been used to evaluate the metabolic activity in live cells and can thus be used for detecting living microorganisms. With the addition of NaOH and Tris-EDTA, the same approach can be accelerated (within 15 min) and used for the quick detection of common bacterial pathogens. The assay results can be evaluated colorimetrically or semi-quantitatively. Here, the quick detection by MTT-PMS assay was further investigated. The assay had a detection limit of approximately 104 CFU/mL. In clinical evaluations, we used the MTT-PMS assay to detect clinical samples and bacteriuria (>105 CFU/mL). The negative predictive value of the MTT-PMS assay for determining bacteriuria was 79.59% but was 100% when the interference of abnormal blood was excluded. Thus, the MTT-PMS assay might be a potential “rule-out” tool for bacterial detection in clinical samples, at a cost of approximately USD 1 per test. Owing to its low cost, rapid results, and easy-to-use characteristics, the MTT-PMS assay may be a potential tool for microorganism detection.


Author(s):  
Muhammet Mükerrem Kaya ◽  
Soner Tutun ◽  
Melike Sultan Usluer ◽  
Hidayet Tutun

Vinegar is an aqueous food product made by a succession of yeast and acetic acid bacteria activities from fruits that contain high carbohydrates such as apples and grapes. Vinegar has been used as a dietary spice and natural remedy since ancient times due to its therapeutic properties including antimicrobial, antidiabetic, and anticancer activities. It has been shown that some bioactive compounds exhibiting antioxidant activity in vinegars lead to anticancer activity. The aim of the present study was to investigate antiproliferative effect of commercial and home-made apple vinegars in native and neutralized form on myeloma cells. In order to neutralize the vinegars, sodium hydroxide (NaOH) was used. A serial two-fold dilutions of the vinegars (50%, 25%, 12.5%, 6.25%, 3.12%, 1.56%, 0.78%, 0.39%) prepared with cell medium were treated to the cells. The MTT (3-(4.5-Dimethylthiazol-2-yl)-2.5-Diphenyltetrazolium Bromide) assay was used to determine the cellular viability in the cells treated with the vinegars. In this study, while commercial vinegar possessed a stronger antiproliferative activity than home-made vinegar, all native vinegars possessed stronger antiproliferative effect than neutralized vinegars. Interestingly, when home-made vinegar (both native and neutralized) concentrations were from 6.25 to 1.56%, the cell viability increased. Apple vinegar exhibited antiproliferative activity on myeloma cells; however, further studies are required to clarify the mechanisms underlying this activity.


2021 ◽  
Author(s):  
Chandran Rajesh ◽  
Senthamarai Kannan Balaji ◽  
Prakash Ramesh ◽  
Narayanan Selvapalam ◽  
Karuppaiah Palanichelvam

Abstract To identify antimitotic compounds from abundant and inexpensive plant resources, banana pseudo-stem was (BPS) chosen. Onion root tip assay and earthworm regeneration assay were carried out to test theantimitotic potential of aqueous extract of BPS.Earthworm (Eudrilus eugeniae) regeneration assay exploits the regeneration ability of amputated earthworms that retain the clitellum region. Aqueous extract of BPS decreased the mitotic index in Allium cepa root tips. Besides, thisaqueous extract of BPS inhibited the regeneration of blastema from amputated earthworms as well. Validation of this extract with MTT (3-(4,5-dimethyl thiazolyl-2-yl)- 2,5-diphenyltetrazolium bromide) assay using MCF-7 breast cancer cell linefurther supported the presence of antimitotic compounds. Aqueous BPS extract was further fractionated with ethyl acetateand it was found to inhibit the regeneration of new tissues from amputated earthworms. Liquid Chromatography and Mass spectrometry (LC-MS) analysis was performed with aqueousBPS extract to predict the lead compounds.Prediction analysis with mass values revealed the presence of three different compounds viz. α-tocotrienol, 1,2,4-nonadecanetriol and 3',4',7-trihydroxyisoflavone, which were already reported to inhibit the cell division. All our results strongly supported that banana pseudo-stem extract possesses antimitotic compounds. This is the first report of identification of putative antimitotic compounds from aqueous extract of Musa paradisiaca var. Robusta by using earthworms.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7610
Author(s):  
Mihaela-Claudia Spataru ◽  
Florina Daniela Cojocaru ◽  
Andrei Victor Sandu ◽  
Carmen Solcan ◽  
Ioana Alexandra Duceac ◽  
...  

Ti-based alloys are widely used in medical applications. When implant devices are used to reconstruct disordered bone, prevent bone resorption and enhance good bone remodeling, the Young’s modulus of implants should be close to that of the bone. To satisfy this requirement, many titanium alloys with different biocompatible elements (Zr, Ta, Mo, Si etc.) interact well with adjacent bone tissues, promoting an adequate osseointegration. Four new different alloys were obtained and investigated regarding their microstructure, mechanical, chemical and biological behavior (in vitro and in vivo evaluation), as follows: Ti20Mo7Zr15Ta, Ti20Mo7Zr15Ta0.5Si, Ti20Mo7Zr15Ta0.75Si and Ti20Mo7Zr15TaSi. 60 days after implantation, both in control and experimental rabbits, at the level of implantation gap and into the periimplant area were found the mesenchymal stem cells which differentiate into osteoblasts, then osteocytes and osteoclasts which are involved in the new bone synthesis and remodeling, the periimplant fibrous capsule being continued by newly spongy bone tissue, showing a good osseointegration of alloys. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the in vitro cytocompatibility of the prepared alloys.


2021 ◽  
Vol 1 (3) ◽  
pp. 176-189
Author(s):  
Prathima Prabhu Tumkur ◽  
Nithin Krisshna Gunasekaran ◽  
Babu R. Lamani ◽  
Nicole Nazario Bayon ◽  
Krishnan Prabhakaran ◽  
...  

Due to its excellent physicochemical properties, cerium oxide (CeO2) has attracted much attention in recent years. CeO2 nanomaterials (nanoceria) are widely being used, which has resulted in them getting released to the environment, and exposure to humans (mostly via inhalation) is a major concern. In the present study, CeO2 nanoparticles were synthesized by hydroxide-mediated method and were further characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction Spectroscopy (XRD). Human lung epithelial (Beas-2B) cells were used to assess the cytotoxicity and biocompatibility activity of CeO2 nanoparticles. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Live/Dead assays were performed to determine the cytotoxicity and biocompatibility of CeO2 nanoparticles. Generation of reactive oxygen species (ROS) by cerium oxide nanoparticles was assessed by ROS assay. MTT assay and Live/Dead assays showed no significant induction of cell death even at higher concentrations (100 μg per 100 μL) upon exposure to Beas-2B cells. ROS assay revealed that CeO2 nanoparticles did not induce ROS that contribute to the oxidative stress and inflammation leading to various disease conditions. Thus, CeO2 nanoparticles could be used in various applications including biosensors, cancer therapy, catalytic converters, sunscreen, and drug delivery.


Author(s):  
Massoud Behnia ◽  
Alireza Latifi ◽  
Mostafa Rezaian ◽  
Sharmin Kharazi ◽  
Mehdi Mohebali ◽  
...  

Background: Acanthamoebae are a causative agent of Acanthamoeba keratitis (AK) in immunocompetent individuals. Since access to propamidine isethionate (Brolene®) as a first-line treatment has been limited in recent years, in the current study, we examined the effects of pentamidine isethionate against trophozoite and cyst forms of Acanthamoeba. Methods: This experimental study was conducted in the Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, during 2019-2020. Pentamidine isethionate at concentrations of 50, 100, 200, 400, 600, 800, and 1000 µM were tested against trophozoites and cyst stages of T4 genotype, at 24- and 48-hour incubation period, and the viability was determined by trypan blue staining. In addition, the cytotoxic effect of the drug was examined in Vero cells using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results: The 50% inhibitory concentration (IC50) of pentamidine isethionate on trophozoite after 24 and 48h were 97.4 µM and 60.99 µM. These results on cyst after 24 and 48h were 470 µM and 175.5 µM, respectively. In MTT assay, the drug showed an inhibitory effect on Vero cell growth with IC50 values of 115.4 µM and 87.42 µM after 24h and 48h, respectively. Conclusion: Pentamidine isethionate exhibited an inhibitory effect on trophozoite and cyst. Given that the trophozoicidal activity of the drug is in the safe dose, it could be suggested as an alternative in patients with AK; however, further investigation is needed in an animal model to confirm the data.


Sign in / Sign up

Export Citation Format

Share Document