cpg dna
Recently Published Documents


TOTAL DOCUMENTS

471
(FIVE YEARS 45)

H-INDEX

72
(FIVE YEARS 4)

2022 ◽  
Author(s):  
LK Metthew Lam ◽  
Jane Dobkin ◽  
Kaitlyn A. Eckart ◽  
Ian Gereg ◽  
Andrew DiSalvo ◽  
...  

Red blood cells (RBCs) demonstrate immunomodulatory capabilities through the expression of nucleic acid sensors. Little is known about bat RBCs, and no studies have examined the immune function of bat erythrocytes. Here we show that bat RBCs express the nucleic acid-sensing Toll-like receptors TLR7 and TLR9 and bind the nucleic acid ligands, single-stranded RNA, and CpG DNA. Collectively, these data suggest that, like human RBCs, bat erythrocytes possess immune function and may be reservoirs for nucleic acids. These findings provide unique insight into bat immunity and may uncover potential mechanisms by which virulent pathogens in humans are concealed in bats.


2021 ◽  
Author(s):  
Masahito Irie ◽  
Johbu Itoh ◽  
Ayumi Matsuzawa ◽  
Masahito Ikawa ◽  
Toru Suzuki ◽  
...  

Retrotransposon Gag-like 5 (RTL5, also known as sushi-ichi-related retrotransposon homolog 8 (SIRH8)) and RTL6 (aka SIRH3) are eutherian-specific genes presumably derived from a retrovirus and phylogenetically related to each other. RTL5 encodes a strongly acidic protein while RTL6 encodes an extremely basic protein, and the former is well conserved and the latter extremely well conserved among the eutherians, indicating their unique and critically important roles as acquired genes. Here we report that RTL5 and RTL6 are microglial genes playing roles in the front line of brain innate immune responses against distinct pathogens. Venus and mCherry knock-in mice exhibited expression of RTL5-mCherry and RTL6-Venus fusion proteins in microglia and as extracellular granules in the central nervus system (CNS), and displayed a rapid response to pathogens such as lipopolysaccharide (LPS), double-stranded (ds) RNA analog and non-methylated CpG DNA. These proteins trapped pathogens in microglia in a variety of RTL-pathogen complexes depending on the pathogens. These results demonstrate that RTL5 and RTL6 exert functional effects against different hazardous substances cooperatively and/or independently to protect the developing and/or mature brain. This provides the first evidence that retrovirus-derived genes play a role in the innate immune system of the eutherian brain.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Minfeng Gan ◽  
Youzhen Ge ◽  
Cheng Yi ◽  
Tianyun Feng ◽  
...  

Abstarct Background Cytosine-phosphate-guanine (CpG) dinucleotides has been used as adjuvants for cancer immunotherapy. However, unmodified CpG are not very efficient in clinical trials. Glucose, ligand of C-type lectin receptors (CLRs), can promote DC maturation and antigen presentation, which is the first step of induction of adaptive immune responses. Therefore, conjugation of type B CpG DNA to glucose-containing glycopolymers may enhance the therapeutic effects against tumor by CpG-based vaccine. Methods gCpG was developed by chemical conjugation of type B CpG DNA to glucose-containing glycopolymers. The therapeutic effects of gCpG-based vaccine were tested in both murine primary melanoma model and its metastasis model. Results gCpG based tumor vaccine inhibited both primary and metastasis of melanoma in mice which was dependent on CD8 + T cells and IFNγ. In tumor microenvironment, gCpG treatment increased Th1 and CTL infiltration, increased M1 macrophages, decreased Tregs and MDSCs populations, and promoted inflammatory milieu with enhanced secretion of IFNγ and TNFα. The anti-tumor efficacy of gCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. Conclusions We confirmed that gCpG was a promising adjuvant for vaccine formulation by activating both tumor-specific Th1 and Tc1 responses, and regulating tumor microenvironments. Graphical Abstract


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12258
Author(s):  
Jason Pugh ◽  
Lisbeth Guethlein ◽  
Peter Parham

Killer Immunoglobulin-like Receptors (KIR) comprise a diverse, highly polymorphic family of cell-surface glycoproteins that are principally expressed by Natural Killer (NK) cells. These innate immune lymphocytes fulfill vital functions in human reproduction and immune responses to viral infection. KIR3DL2 is an inhibitory NK cell receptor that recognizes a common epitope of the HLA-A3 and HLA-A11 class I glycoproteins of the major histocompatibility complex. KIR3DL2 also binds exogenous DNA containing the CpG motif. This interaction causes internalization of the KIR-DNA. Exogenous CpG-DNA typically activates NK cells, but the specificity of KIR3DL2-DNA binding and internalization is unclear. We hypothesized that KIR3DL2 binds exogenous DNA in a sequence-specific manner that differentiates pathogen DNA from self-DNA. In testing this hypothesis, we surveyed octameric CpG-DNA sequences in the human genome, and in reference genomes of all bacteria, fungi, viruses, and parasites, with focus on medically relevant species. Among all pathogens, the nucleotides flanking CpG motifs in the genomes of parasitic worms that infect humans are most divergent from those in the human genome. We cultured KIR3DL2+NKL cells with the commonest CpG-DNA sequences in either human or pathogen genomes. DNA uptake was negatively correlated with the most common CpG-DNA sequences in the human genome. These CpG-DNA sequences induced inhibitory signaling in KIR3DL2+NKL cells. In contrast, KIR3DL2+NKL cells lysed more malignant targets and produced more IFNγ after culture with CpG-DNA sequences prevalent in parasitic worms. By applying functional immunology to evolutionary genomics, we conclude that KIR3DL2 allows NK cells to differentiate self-DNA from pathogen DNA.


2021 ◽  
Vol 8 (1) ◽  
pp. e000531
Author(s):  
Tammo Brunekreef ◽  
Maarten Limper ◽  
Rowena Melchers ◽  
Linda Mathsson-Alm ◽  
Jorge Dias ◽  
...  

ObjectiveMany autoantibodies are known to be associated with SLE, although their role in clinical practice is limited because of low sensitivity and weak associations with clinical manifestations. There has been great interest in the discovery of new autoantibodies to use in clinical practice. In this study, we investigated 57 new and known antibodies and their potential for diagnostics or risk stratification.MethodsBetween 2014 and 2017, residual sera of all anti-dsDNA tests in the UMC Utrecht were stored in a biobank. This included sera of patients with SLE, patients with a diagnosis of another immune-mediated inflammatory disease (IMID), patients with low (non-IMID) or medium levels of clinical suspicion of SLE but no IMID diagnosis (Rest), and self-reported healthy blood bank donors. Diagnosis and (presence of) symptoms at each blood draw were retrospectively assessed in the patient records with the Utrecht Patient-Oriented Database using a newly developed text mining algorithm. Sera of patients were analysed for the presence of 57 autoantibodies with a custom-made immunofluorescent microarray. Signal intensity cut-offs for all antigens on the microarray were set to the 95th percentile of the non-IMID control group. Differences in prevalence of autoantibodies between patients with SLE and control groups were assessed.ResultsAutoantibody profiles of 483 patients with SLE were compared with autoantibody profiles of 1397 patients from 4 different control groups. Anti-dsDNA was the most distinguishing feature between patients with SLE and other patients, followed by antibodies against Cytosine-phosphate-Guanine (anti-CpG) DNA motifs (p<0.0001). Antibodies against CMV (cytomegalovirus) and ASCA (anti-Saccharomyces cerevisiae antibodies) were more prevalent in patients with SLE with (a history of) lupus nephritis than patients with SLE without nephritis.ConclusionAntibodies against CpG DNA motifs are prevalent in patients with SLE. Anti-CMV antibodies are associated with lupus nephritis.


Author(s):  
Tiantian Yue ◽  
Fei Sun ◽  
Faxi Wang ◽  
Chunliang Yang ◽  
Jiahui Luo ◽  
...  

AbstractThe methyl-CpG-binding domain 2 (MBD2) interprets DNA methylome-encoded information through binding to the methylated CpG DNA, by which it regulates target gene expression at the transcriptional level. Although derailed DNA methylation has long been recognized to trigger or promote autoimmune responses in type 1 diabetes (T1D), the exact role of MBD2 in T1D pathogenesis, however, remains poorly defined. Herein, we generated an Mbd2 knockout model in the NOD background and found that Mbd2 deficiency exacerbated the development of spontaneous T1D in NOD mice. Adoptive transfer of Mbd2−/− CD4 T cells into NOD.scid mice further confirmed the observation. Mechanistically, Th1 stimulation rendered the Stat1 promoter to undergo a DNA methylation turnover featured by the changes of DNA methylation levels or patterns along with the induction of MBD2 expression, which then bound to the methylated CpG DNA within the Stat1 promoter, by which MBD2 maintains the homeostasis of Th1 program to prevent autoimmunity. As a result, ectopic MBD2 expression alleviated CD4 T cell diabetogenicity following their adoptive transfer into NOD.scid mice. Collectively, our data suggest that MBD2 could be a viable target to develop epigenetic-based therapeutics against T1D in clinical settings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander G. Shaw ◽  
Kathleen Sim ◽  
Graham Rose ◽  
David J. Wooldridge ◽  
Ming-Shi Li ◽  
...  

Abstract Background Necrotising enterocolitis (NEC) is a devastating bowel disease, primarily affecting premature infants, with a poorly understood aetiology. Prior studies have found associations in different cases with an overabundance of particular elements of the faecal microbiota (in particular Enterobacteriaceae or Clostridium perfringens), but there has been no explanation for the different results found in different cohorts. Immunological studies have indicated that stimulation of the TLR4 receptor is involved in development of NEC, with TLR4 signalling being antagonised by the activated TLR9 receptor. We speculated that differential stimulation of these two components of the signalling pathway by different microbiota might explain the dichotomous findings of microbiota-centered NEC studies. Here we used shotgun metagenomic sequencing and qPCR to characterise the faecal microbiota community of infants prior to NEC onset and in a set of matched controls. Bayesian regression was used to segregate cases from control samples using both microbial and clinical data. Results We found that the infants suffering from NEC fell into two groups based on their microbiota; one with low levels of CpG DNA in bacterial genomes and the other with high abundances of organisms expressing LPS. The identification of these characteristic communities was reproduced using an external metagenomic validation dataset. We propose that these two patterns represent the stimulation of a common pathway at extremes; the LPS-enriched microbiome suggesting overstimulation of TLR4, whilst a microbial community with low levels of CpG DNA suggests reduction of the counterbalance to TLR4 overstimulation. Conclusions The identified microbial community patterns support the concept of NEC resulting from TLR-mediated pathways. Identification of these signals suggests characteristics of the gastrointestinal microbial community to be avoided to prevent NEC. Potential pre- or pro-biotic treatments may be designed to optimise TLR signalling.


2021 ◽  
pp. ji2100030
Author(s):  
Rina Iwase ◽  
Naoto Naruse ◽  
Miho Nakagawa ◽  
Risa Saito ◽  
Akira Shigenaga ◽  
...  

Author(s):  
Guy Journo ◽  
Anuj Ahuja ◽  
David Dias-Polak ◽  
Yonatan Eran ◽  
Reuven Bergman ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV), also familiar as human herpesvirus 8 (HHV-8), is one of the well-known human cancer-causing viruses. KSHV was originally discovered by its association with Kaposi’s sarcoma (KS), a common AIDS-related neoplasia. Additionally, KSHV is associated with two B-lymphocyte disorders; primary effusion lymphoma (PEL) and Multicentric Castlemans Disease (MCD). DNA methylation is an epigenetic modification that is essential for a properly functioning human genome through its roles in chromatin structure maintenance, chromosome stability and transcription regulation. Genomic studies show that expressed promoters tend to be un-methylated whereas methylated promoters tend to be inactive. We have previously revealed the global methylation footprint in PEL cells and found that many cellular gene promoters become differentially methylated and hence differentially expressed in KSHV chronically infected PEL cell lines. Here we present the cellular CpG DNA methylation footprint in KS, the most common malignancy associated with KSHV. We performed MethylationEPIC BeadChip to compare the global methylation status in normal skin compared to KS biopsies, and revealed dramatic global methylation alterations occurring in KS. Many of these changes were attributed to hyper-methylation of promoters and enhancers that regulate genes associated with abnormal skin morphology, a well-known hallmark of KS development. We observed six-fold increase in hypo-methylated CpGs between early stage of KS (plaque) and the more progressed stage (nodule). These observations suggest that hyper-methylation takes place early in KS while hypo-methylation is a later process that is more significant in nodule. Our findings add another layer to the understanding of the relationship between epigenetic changes caused by KSHV infection and tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document