the density functional theory
Recently Published Documents


TOTAL DOCUMENTS

1404
(FIVE YEARS 490)

H-INDEX

40
(FIVE YEARS 7)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Karel Carva ◽  
Petru Vlaic ◽  
Jan Honolka

The huge increase in the superconducting transition temperature of FeSe induced by an interface to SrTiO3 remains unexplained to date. However, there are numerous indications of the critical importance of specific features of the FeSe band topology in the vicinity of the Fermi surface. Here, we explore how the electronic structure of FeSe changes when located on another lattice matched substrate, namely a Si(001) surface, by first-principles calculations based on the density functional theory. We study non-magnetic (NM) and checkerboard anti-ferromagnetic (AFM) magnetic orders in FeSe and determine which interface arrangement is preferred. Our calculations reveal interesting effects of Si proximity on the FeSe band structure. Bands corresponding to hole pockets at the Γ point in NM FeSe are generally pushed down below the Fermi level, except for one band responsible for a small remaining hole pocket. Bands forming electron pockets centered at the M point of the Brillouin zone become less dispersive, and one of them is strongly hybridized with Si. We explain these changes by a redistribution of electrons between different Fe 3d orbitals rather than charge transfer to/from Si, and we also notice an associated loss of degeneracy between dxz and dyz orbitals.


2022 ◽  
Vol 1049 ◽  
pp. 180-185
Author(s):  
Viktor Mavrinskii ◽  
Evgeniy A. Belenkov

Calculations of the structural and energy parameters, band structure and density of electronic states of new structural varieties of graphyne have been performed by the density functional theory method. The initial structure of the nine polymorphs was theoretically constructed on the basis of the 5-7a graphene layer. As a result of the calculations, the structure of only five graphyne layers was found to be stable: α-L5-7a, β1-L5-7a, β2-L5-7a, β3-L5-7a and β4-L5-7a. The structure of layers γ1-L5-7a, γ2-L5-7a, and γ3-L5-7a is transformed into the structure of graphene layers by geometric optimization, and the graphyne layer γ4-L5-7a is transformed sp+sp2 layer L3-6-13. The sublimation energy of the stable graphyne polymorphs varies from 6.66 to 6.78 eV/atom. The density of electronic states at the Fermi energy level for all α-L5-7a and β-L5-7a layers of graphyne is different from zero, so the new graphyne polymorphs should have metallic properties.


2022 ◽  
Vol 3 (1) ◽  
pp. 41-52
Author(s):  
Michael Vogl ◽  
Martin Valldor ◽  
Roman Boy Piening ◽  
Dmitri V. Efremov ◽  
Bernd Büchner ◽  
...  

We present the synthesis and characterization of the iridium-based sulfide Ca1−xIr4S6(S2). Quality and phase analysis were conducted by means of energy-dispersive X-ray spectroscopy (EDXS) and powder X-ray diffraction (XRD) techniques. Structure analysis reveals a monoclinic symmetry with the space group C 1 2/m 1 (No. 12), with the lattice constants a = 15.030 (3) Å, b = 3.5747 (5) Å and c = 10.4572 (18) Å. Both X-ray diffraction and EDXS suggest an off-stoichiometry of calcium, leading to the empirical composition Ca1−xIr4.0S6(S2) [x = 0.23–0.33]. Transport measurements show metallic behavior of the compound in the whole range of measured temperatures. Magnetic measurements down to 1.8 K show no long range order, and Curie–Weiss analysis yields θCW = −31.4 K, suggesting that the compound undergoes a magnetic state with short range magnetic correlations. We supplement our study with calculations of the band structure in the framework of the density functional theory.


2022 ◽  
Vol 327 ◽  
pp. 54-64
Author(s):  
Ivo Spacil ◽  
David Holec ◽  
Peter Schumacher ◽  
Jiehua Li

Different Ta concentrations together with stochiometric grain refiner (Al-2.2Ti-1B) in Al-Si-Mg based alloys were investigated with the aim to elucidate grain refinement mechanisms. Post-solidification microstructure was characterised using optical microscopy and scanning electron microscopy (SEM), with a special focus on the Ta-rich layer (more likely to be Al3Ta) on the basal planes (0001) of TiB2. A significant grain refinement was observed by using the solute Ta together with stochiometric grain refiner (Al-2.2Ti-1B). In order to further elucidate the formation of Ta-rich layer on the basal planes (0001) of TiB2, the Density Functional Theory (DFT) calculation were also performed to determine the interface energies of different interfaces and sandwich configurations, including Al (111), Al3Ti (112) and Al3Ta (112) at the interface of TiB2 basal plane (0001). It was found that the interface energy for Ti-terminated TiB2 at the interface throughout all configurations involved in this paper is lower than that for B-terminated TiB2, indicating that Ti-terminated TiB2 is more favourable. It was also found that the Al3Ta configuration yields the same interface energies as the Al3Ti configuration. Furthermore, the interface energy of the sandwich configuration also shows nearly identical values along the TiB2 // Al3Ti and TiB2 // Al3Ta interface energy, strongly indicating that the solute Ti can be fully replaced by the solute Ta.


2022 ◽  
Vol 23 (2) ◽  
pp. 634
Author(s):  
Andrey A. Buglak ◽  
Alexei I. Kononov

Tyrosine (Tyr) is involved in the synthesis of neurotransmitters, catecholamines, thyroid hormones, etc. Multiple pathologies are associated with impaired Tyr metabolism. Silver nanoclusters (Ag NCs) can be applied for colorimetric, fluorescent, and surface-enhanced Raman spectroscopy (SERS) detection of Tyr. However, one should understand the theoretical basics of interactions between Tyr and Ag NCs. Thereby, we calculated the binding energy (Eb) between Tyr and Agnq (n = 1–8; q = 0–2) NCs using the density functional theory (DFT) to find the most stable complexes. Since Ag NCs are synthesized on Tyr in an aqueous solution at pH 12.5, we studied Tyr−1, semiquinone (SemiQ−1), and Tyr−2. Ag32+ and Ag5+ had the highest Eb. The absorption spectrum of Tyr−2 significantly red-shifts with the attachment of Ag32+, which is prospective for colorimetric Tyr detection. Ag32+ interacts with all functional groups of SemiQ−1 (phenolate, amino group, and carboxylate), which makes detection of Tyr possible due to band emergence at 1324 cm−1 in the vibrational spectrum. The ground state charge transfer between Ag and carboxylate determines the band emergence at 1661 cm−1 in the Raman spectrum of the SemiQ−1–Ag32+ complex. Thus, the prospects of Tyr detection using silver nanoclusters were demonstrated.


2022 ◽  
Vol 47 (1) ◽  
pp. 40-54
Author(s):  
Mohamed Jabha ◽  
Abdellah El Alaoui ◽  
Abdellah Jarid ◽  
El Houssine Mabrouk

This work consists of theoretically studying the electronic and optical properties of 9-(4-octyloxyphenyl)-2.7-divinyl-carbazole (PCrV) oligomers. This study has been undertaken using the density functional theory (DFT) method at the B3LYP/6-31G (d,p) level and BP86/6-31G (d,p) level of theory. To evaluate the PCrV-basis systems properties, the structural optimization without geometrical restrictions was performed on the total potential energy surface (TPES). In order to ensure good absorption of radiation, the interest was in increasing the efficiency of the organic photovoltaic cell. For this effect, the (HOMO-LUMO) gap energy of such compounds was reduced in terms of geometric and electronic structure. The BP86 functional gives good results at the energy gap level, while other parameters using the B3LYP functional give the best results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Nguyen Thi Thanh Hai ◽  
Thanh Q. Bui ◽  
Tran Thi Ai My ◽  
Huynh Thi Phuong Loan ◽  
Tran Thai Hoa ◽  
...  

Copper lighter tetrylenes are promising for inhibition towards Rhizoctonia solani-based protein PDB-4G9M and Magnaporthe oryzae-based PDB-6JBR in rice. Quantum properties of four hypothetic copper complexes of carbenes and silylenes (Cu-NHC1, Cu-NHC2, Cu-NHSi1, and Cu-NHSi2) were examined using the density functional theory. Their inhibitability towards the targeted proteins was evaluated using molecular docking simulation. Quantum analysis predicts the stability of the investigated complexes and thus their practical existability and practicable synthesisability. Their electronic configurations are justified as highly conducive to intermolecular interaction. Regarding ligand-protein as carbenes/silylenes-4G9M inhibitory structures, the stability is estimated in the order [Cu-NHC2]-4G9M (DS −12.9 kcal⋅mol−1) > [Cu-NHSi1]-4G9M (DS −11.8 kcal⋅mol−1) = [Cu-NHSi2]-4G9M (DS −11.7 kcal⋅mol−1) > [Cu-NHC1]-4G9M (DS –11.4 kcal⋅mol−1). In contrast, the corresponding order for the carbenes/silylenes-6JBR systems is [Cu-NHSi2]-6JBR (DS –13.4 kcal⋅mol−1) > [Cu-NHC2]-6JBR (DS −13.0 kcal⋅mol−1) = [Cu-NHSi1]-6JBR (DS −12.6 kcal⋅mol−1) > [Cu-NHC1]-6JBR (DS −12.3 kcal⋅mol−1). In theory, this study suggests a potentiality of copper lighter tetrylenes and their derivatives against the infection of fungi Rhizoctonia solani and Magnaporthe oryzae, thus encouraging attempts for experimental developments.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yunmi Huang ◽  
Haijun Luo ◽  
Changkun Dong

Based on the density functional theory, the adsorption and decomposition of NOx (x = 1, 2) on Mo (110) surface are studied with first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). The corresponding adsorption energies for the structures are −3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV, respectively. The preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively easy to dissociate on Mo (110) surface.


Sign in / Sign up

Export Citation Format

Share Document