wild bee
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 138)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Vol 327 ◽  
pp. 107826
Author(s):  
Ashley L. St. Clair ◽  
Ge Zhang ◽  
Adam G. Dolezal ◽  
Matthew E. O’Neal ◽  
Amy L. Toth

Author(s):  
Jiří Hadrava ◽  
Anna Talašová ◽  
Jakub Straka ◽  
Daniel Benda ◽  
Jan Kazda ◽  
...  

Author(s):  
Andreia Penado ◽  
Hugo Rebelo ◽  
Dave Goulson ◽  
Thomas J. Wood ◽  
Miguel Porto ◽  
...  

2022 ◽  
Vol 323 ◽  
pp. 107697
Author(s):  
Timothy Weekers ◽  
Leon Marshall ◽  
Nicolas Leclercq ◽  
Thomas James Wood ◽  
Diego Cejas ◽  
...  

Author(s):  
Vivien von Königslöw ◽  
Felix Fornoff ◽  
Alexandra-Maria Klein

AbstractIn intensive agricultural landscapes semi-natural habitats for pollinators are often limited, although willingness to establish pollinator habitat is increasing among farmers. A common pollinator enhancement measure is to provide flower strips, but existent or improved hedgerows might be more effective. In this study, we compare the effectiveness of three pollinator enhancement measures at edges of conventional apple orchards: (i) perennial flower strips, (ii) existent hedgerows, and (iii) existent hedgerows complemented with a sown herb layer. We used orchard edges without any enhancement as control. The study took place over three consecutive years in Southern Germany. Wild bee abundance and species richness were highest in flower strips followed by improved hedges. Hoverflies were also most abundant in flower strips, but not more species rich than at control sites. Wild bee but not hoverfly community composition differed between control and enhancement sites. The overall pollinator community included only few threatened or specialized species. Flower abundance was the main driver for wild bee diversity, whereas hoverflies were largely unaffected by floral resources. Pollinator enhancement had neither an effect on the abundance or species richness within the orchards nor on apple flower visitation. Perennial flower strips seem most effective to enhance wild bees in intensive agricultural landscapes. Additionally, flower-rich hedgerows should be promoted to complement flower strips by extending the flowering period and to increase connectivity of pollinator habitat in agricultural landscapes.


2021 ◽  
Vol 2 ◽  
Author(s):  
Guillaume Ghisbain

The unsustainable use of ecosystems by human societies has put global biodiversity in peril. Bees are, in this context, a popular example of a highly diversified group of pollinators whose collapse is a major concern given the invaluable ecosystem services they provide. Amongst them, bumblebees (Bombus) have increasingly drawn the attention of scientists due to their dramatic population declines globally. This regression has converted them into popular conservation entities, making them the second most studied group of bees worldwide. However, in addition to have become relevant models in the fields of ecology, evolution and biogeography, bumblebees have also been used as models for studying wild bee decline and conservation worldwide. Integrating evidence from the comparative ecology and resilience of bumblebees and wild bees, I discuss the relevance of using Bombus as radars for wild bee decline worldwide. Responses of bumblebees to environmental changes are generally not comparable with those of wild bees because of their relatively long activity period, their inherent sensitivity to high temperatures, their relatively generalist diet breadth and many aspects arising from their eusocial behavior. Moreover, important differences in the available historical data between bumblebees and other bees make comparisons of conservation status even more arduous. Overall, these results reinforce the need for conservation actions that consider a higher level of understanding of ecological diversity in wild bees, highlight the need for an updated and more extensive sampling of these organisms, and emphasize that more caution is required when extrapolating trends from model species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Imre Demeter ◽  
Adalbert Balog ◽  
Miklós Sárospataki

During the study, the honeybee effects on wild bees were tested and hypothesized that smaller distances from beehives will increase competitions between honeybees and wild bees, while greater distances will have a deleterious effect on competition. The impact on species richness and diversity was tested with distances from beehives, considering that this may differ when large and small wild bee species are considered separately. Altogether 158 species and 13,164 individuals were collected, from which 72% (9,542 individuals) were Apis mellifera. High variation in abundances was detected from one year to another, and the species turnover by sites was 67% in site A, 66% in site V, and 63% in site F. This last one was the site with the previous contact with honeybees. Considering distances from beehives, significant decreases in small bee species diversity were detected from one year to another at each distance except site F, 250 m from hives. The changes in species diversity and community structure of small bee species are detected from one year to another.


Sign in / Sign up

Export Citation Format

Share Document