lung injury
Recently Published Documents


TOTAL DOCUMENTS

18209
(FIVE YEARS 4126)

H-INDEX

193
(FIVE YEARS 30)

2022 ◽  
Vol 147 ◽  
pp. 112615
Author(s):  
Yan-yan Yu ◽  
Xiang-qian Li ◽  
Wen-peng Hu ◽  
Shi-chao Cu ◽  
Jia-jia Dai ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 405-410
Author(s):  
Lian Tan ◽  
Xiongxiong Wang ◽  
Danqi Chen ◽  
Li Xu ◽  
Yudong Xu ◽  
...  

Our study investigates whether miR-265 regulates the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into alveolar type II epithelial cells (ATII) through TGF-β1 and promotes lung injury repair in rats with sepsis, thereby inhibiting sepsis progression. 25 patients with sepsis admitted to the Respiratory and Critical Care Medicine Department of the hospital and 17 normal controls were included. TGF-β1 level was measured by ELISA. miR-265 level was measured by qRT-PCR and AT II-related genes and proteins expression was analyzed by western blot and qRT-PCR. miR-265 expression was significantly higher in sepsis patients than normal group. Progenitor BMSCs were long and shuttle-shaped after 1 and 3 days of growth. Cultured MSCs had low expression of the negative antigen CD34 (4.32%) and high expression of the positive antigen CD44 (99.87%). TGF-β1 level was significantly increased with longer induction time, while miR-265 expression was significantly decreased in cell culture medium. miR-265 interference significantly decreased TGF-β1 expression. In conclusion, miR-265 inhibits BMSC differentiation to AT II via regulation of TGF-β1, thereby inhibiting sepsis progression.


2022 ◽  
Vol 12 (2) ◽  
pp. 358-364
Author(s):  
Wei Zhang ◽  
Fang Liu ◽  
Caixia Zhang

To elucidate the communication between exosomes (exo) derived from BMSCs and injured lung cells. BMSC-exo was isolated and characterized. Lung epithelial cells A549 were incubated with BMSC-exo, and treated by LPS to induce cell damage. CCK-8 assay was carried out to test cell proliferation, flow cytometry was adopted to analyze cell apoptosis, and RT-qPCR as well as Western blot analysis were selected to assess expression of apoptosis- and anti-apoptosis related proteins. Functional experiment was performed to identify the role of microRNA (miRNA)-328 in lung injury. LPS treatment significantly inhibited the viability of A549 cells, induced apoptosis of A549 cells by increasing Bax and casepase-3 levels and reducing Bcl-2 expression, whilst declined expression of miR-328 and suppressed the phosphorylation activation of the MAPK/ERK pathway. Meanwhile, the amount of IL-6, IL-1β and TNF-α were elevated in injured cells, but, the presence of BMSC-exo eliminated the elevation of the contents. Importantly, treatment with BMSC-exo increased miR-328 expression, activated MAPK MAPK/ERK pathway, inhibited apoptosis, and enhanced cell proliferation. However, the effect of BMSC-exo was attenuated when the cells were silenced for miR-328 expression. Collectively, BMSC-exo enriched miR-328 could relieve acute lung injury through MAPK/ERK pathway.


2022 ◽  
Vol 10 (3) ◽  
pp. 753-761
Author(s):  
Xue-Mei Zheng ◽  
Zhuo Yang ◽  
Guang-Li Yang ◽  
Yan Huang ◽  
Jie-Ru Peng ◽  
...  

Author(s):  
Yumeng Huang ◽  
Qian Ji ◽  
Yanyan Zhu ◽  
Shengqiao Fu ◽  
Shuangwei Chen ◽  
...  

Excessive neutrophil extracellular trap (NET) formation is an important contributor to sepsis-induced acute lung injury (ALI). Recent reports indicate that platelets can induce neutrophil extracellular trap formation. However, the specific mechanism remains unclear. Tph1 gene, which encodes the rate-limiting enzyme for peripheral 5-hydroxytryptophan (5-HT) synthesis, was knocked out in mice to simulate peripheral 5-HT deficiency. Cecal ligation and puncture (CLP) surgery was performed to induce sepsis. We found that peripheral 5-HT deficiency reduced NET formation in lung tissues, alleviated sepsis-induced lung inflammatory injury, and reduced the mortality rate of CLP mice. In addition, peripheral 5-HT deficiency was shown to reduce the accumulation of platelets and NETs in the lung of septic mice. We found that platelets from wild-type (WT), but not Tph1 knockout (Tph1−/−), mice promote lipopolysaccharide (LPS)-induced NET formation. Exogenous 5-HT intervention increased LPS-induced NET formation when Tph1−/− platelets were co-cultured with WT neutrophils. Therefore, our study uncovers a mechanism by which peripheral 5-HT aggravated sepsis-induced ALI by promoting NET formation in the lung of septic mice.


2022 ◽  
Author(s):  
Zixuan Liu ◽  
Mingming Chen ◽  
Yini Sun ◽  
Xu Li ◽  
Liu Cao ◽  
...  

Heparin-binding protein (HBP), as a granule protein secreted by polymorphonuclear neutrophils (PMNs) participates in the pathophysiological process of sepsis. It has been reported that HBP is a biomarker of sepsis, which is related to the severity of septic shock and organ dysfunction. HBP binds to vascular endothelial cells as one of the primary target sites. However, it is still unclear whether HBP-binding protein receptors exist on the surface of ECs. The effect of HBP on vascular permeability in sepsis and its mechanism needs to be explored. We conducted in vivo and in vitro study. We demonstrated that HBP bound to transforming growth factor-β receptor type 2 (TGF-β-R2) as a ligand. GST pull-down analysis reveals that HBP mainly interacts with the extracellular domain of TGF-β-R2. HBP induced acute lung injury (ALI) and vascular leakage via activation of TGF-β/SMAD2/3 signaling pathway. Permeability assay suggests TGF-β-R2 is necessary for HBP-induced increased permeability. We also defined the role of HBP and its potential membrane receptor TGF-β-R2 in the blood-gas barrier in the pathogenesis of HBP-related ALI.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Bin-Fei Zhang ◽  
Wei Song ◽  
Jun Wang ◽  
Peng-Fei Wen ◽  
Yu-Min Zhang

Abstract Objectives The lung injury is often secondary to severe trauma. In the model of crush syndrome, there may be secondary lung injury. We hypothesize that high-mobility group box 1 (HMGB1), released from muscle tissue, mediates the apoptosis of alveolar epithelial cells (AEC) via HMGB1/Receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway. The study aimed to investigate how HMGB1 mediated the apoptosis of AEC in the rat model. Methods Seventy-five SD male rats were randomly divided into five groups: CS, CS + vehicle, CS + Ethyl pyruvate (EP), CS + FPS-ZM1 group, and CS + SP600125 groups. When the rats CS model were completed after 24 h, the rats were sacrificed. We collected the serum and the whole lung tissues. Inflammatory cytokines were measured in serum samples. Western blot and RT-qPCR were used to quantify the protein and mRNA. Lastly, apoptotic cells were detected by TUNEL. We used SPSS 25.0 for statistical analyses. Results Nine rats died during the experiments. Dead rats were excluded from further analysis. Compared to the CS group, levels of HMGB1 and inflammatory cytokines in serum were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Western blot and RT-qPCR analysis revealed a significant downregulation of HMGB1, RAGE, and phosphorylated-JNK in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups, compared with the CS groups, excluding total-JNK mRNA. Apoptosis of AEC was used TUNEL to assess. We found the TUNEL-positive cells were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Conclusion The remote lung injury begins early after crush injuries. The HMGB1/RAGE/JNK signaling axis is an attractive target to abrogate the apoptosis of AEC after crush injuries.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Ni An ◽  
Zhenjie Li ◽  
Xiaodi Yan ◽  
Hainan Zhao ◽  
Yajie Yang ◽  
...  

AbstractThe lung is one of the most sensitive tissues to ionizing radiation, thus, radiation-induced lung injury (RILI) stays a key dose-limiting factor of thoracic radiotherapy. However, there is still little progress in the effective treatment of RILI. Ras-related C3 botulinum toxin substrate1, Rac1, is a small guanosine triphosphatases involved in oxidative stress and apoptosis. Thus, Rac1 may be an important molecule that mediates radiation damage, inhibition of which may produce a protective effect on RILI. By establishing a mouse model of radiation-induced lung injury and orthotopic lung tumor-bearing mouse model, we detected the role of Rac1 inhibition in the protection of RILI and suppression of lung tumor. The results showed that ionizing radiation induces the nuclear translocation of Rac1, the latter then promotes nuclear translocation of P53 and prolongs the residence time of p53 in the nucleus, thereby promoting the transcription of Trp53inp1 which mediates p53-dependent apoptosis. Inhibition of Rac1 significantly reduce the apoptosis of normal lung epithelial cells, thereby effectively alleviating RILI. On the other hand, inhibition of Rac1 could also significantly inhibit the growth of lung tumor, increase the radiation sensitivity of tumor cells. These differential effects of Rac1 inhibition were related to the mutation and overexpression of Rac1 in tumor cells.


2022 ◽  
Author(s):  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  
...  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.


Sign in / Sign up

Export Citation Format

Share Document