safety control
Recently Published Documents


TOTAL DOCUMENTS

1022
(FIVE YEARS 359)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Feipeng Wang ◽  
Diana Filipa Araújo ◽  
Yan-Fu Li

The recent social trends and accelerated technological progress culminated in the development of autonomous vehicles (AVs). Reliability assessment for AV systems is in high demand before its market launch. In safety-critical systems (SCSs) such as AV systems, the reliability concept should be broadened to consider more safety-related issues. In this paper, reliability is defined as the probability that the system performs satisfactorily for a given period of time under stated conditions. This paper proposes a reliability assessment framework of AV, consisting of three main stages: (i) modeling the safety control structure through the Systems-Theoretic Accident Model and Processes (STAMP); (ii) mapping the control structure and functional relationships to a directed acyclic graph (DAG); and (iii) construct a Bayesian network (BN) on DAG to assess the system reliability. The fully automated (level 5) vehicle system is shown as a numeric example to illustrate how this suggested framework works. A brief discussion on involving human factors in systems to analyze lower levels of automated vehicles is also included, demonstrating the need for further research on real case studies.


2022 ◽  
Vol 130 (2) ◽  
pp. 300
Author(s):  
А.С. Шишов ◽  
А.Г. Мирочник

The interaction of tris-dibenzoylmethanate Eu(III) with dimethylamine and ammonia vapors was investigated. It was found that when vapors of aqueous solutions of analytes are exposed to tris-dibenzoylmethanate Eu(III) impregnated into the SiO2 matrix, an optical response is observed in the form of an increase in the luminescence intensity of Eu(III). Changes in the luminescence spectra and luminescence excitation of this sensor are analyzed, both under the quenching action of water vapor and under the sensitizing action of analyte vapors. The main points recorded in the excitation spectra are noted, which are important for understanding the processes occurring in the near environment of the lanthanide center. The luminescent chemosensor is promising for creating sensors for detecting ammonia and amines in food safety control and environmental monitoring. Shishov A.S., Mirochnik A.G.


Author(s):  
Kexin Guo ◽  
Wenyu Zhang ◽  
Yukai Zhu ◽  
Jindou Jia ◽  
Xiang Yu ◽  
...  

2022 ◽  
Vol 130 (3) ◽  
pp. 428
Author(s):  
Н.В. Петроченкова ◽  
Т.Б. Емелина ◽  
А.Г. Мирочник

There were studied the luminescent chemosensory properties of Eu(III) carboxylatodibenzoylmethanates with acetic and acrylic acids while the interaction with ammonia vapors. Quantitative measurements of the optical response showed that with an increase in the analyte concentration in the range of 3-330 ppm, a linear increase in the luminescence intensity of europium(III) is observed. The reversibility of the luminescent response was established, the limit of detection of ammonia was 3 ppm. The mechanism of the optical effect is revealed by the method of quantum chemical modeling: the interaction of ammonia with the sensor leads to the formation of a rigid structural fragment of H2O–NH3, which blocks the quenching effect of high-frequency OH vibrations on luminescence. The studied chemosensors have high sensitivity and selectivity and, thus, can be promising for creating ammonia detection sensors for food safety control and environmental monitoring.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 251
Author(s):  
Liqin Ding ◽  
Zhiqiao Wang ◽  
Jianguo Lv ◽  
Yu Wang ◽  
Baolin Liu

Severe wellbore stability issues were reported while drilling in laminated formation with weak planes such as beddings. To accurately determine the safe mud weight according to the changing environment is of primary importance for safety control of drilling. Considering both the elastic and strength anisotropy of bedding formation, a novel theoretical model is established and the stress and failure around wellbores are analyzed. The accuracy and applicability of the theoretical model is verified by in situ field data. For the purpose of fulfilling real-time prediction, the method flowchart of programming is also provided. The results show that the model built can be conveniently used to predict the stress distribution, failure area, and collapse and fracture pressure while drilling, and rather good predictions can be made compared to real field data. In addition, the inhomogeneity of in situ stress and elastic parameters affect the upper limit of the safe mud weight window (SMWW) greater than the lower limit. Negative SMWW may appear with the direction change of the wellbore or weak plane, especially when the azimuths of them change. As to the magnitude of SMWW, the anisotropic effects of Young’s modulus are greater than the Poisson’s ratio. The method established in this paper can greatly help with the precise prediction of wellbore stability as drilling proceeds in bedding formation.


2021 ◽  
Vol 7 (4) ◽  
pp. 110-117
Author(s):  
А. Kulik

An anti-aircraft accident method is proposed, implemented in the decision support module, which is the main element of the flight safety control system and is a dynamic expert system. On the basis of the proposed method, recommendations are formed to the threat countering crew accidents using the information about its psychophysical state, the technical state an aircraft, external influencing factors, as well as a forecast of changes in flight conditions. The advantage of the proposed method is the ability to identify the immediate threat of an accident, as well as the development of management decisions to reduce the impact of the cause of the accident on flight safety. The peculiarity of the method of parrying the threat of an aircraft accident is the classification of management decisions depending on the flight conditions of the aircraft, which will reduce the computational costs for generating a threat parrying signal. Numerical modeling of the work using the assessment of a set of decision support rules made it possible to confirm its performance. The results can be used in systems development for safety an aircraft’s flight, the mathematical support of decision support systems.


Author(s):  
Sh. S. Amanova ◽  
N. T. Raimbaeva ◽  
U. O. Tungyshbaeva

In recent years, the production and consumption of poultry meat has been widely used both on the world market and on the market of Kazakhstan, one of the reasons for which is that poultry products are more accessible to consumers than animal products. With such an import structure, it can be assumed that the volume of imports of cheap chicken from abroad is a function of the income level of the population: the smaller the proportion of the population with a certain low income level, the less imports. For the effective development of poultry farming in Kazakhstan, it is necessary to overcome a number of constraining factors, one of which is the insufficient modern safety control system throughout the poultry meat production chain. The article develops a flowchart of the semifinished product production process based on poultry meat-broiler with soy flour, examines possible risks (hazards) for the development of management measures in the production of semi-finished products, identifies three control critical points for the production of semi-finished products from broiler meat with soy flour.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
André C. M. Cavalheiro ◽  
Diolino J. Santos Filho ◽  
Jônatas C. Dias ◽  
Aron J. P. Andrade ◽  
José R. Cardoso ◽  
...  

In patients with severe heart disease, the implantation of a ventricular assist device (VAD) may be necessary, especially in patients with an indication for heart transplantation. For this, the Institute Dante Pazzanese of Cardiology (IDPC) has developed an implantable centrifugal blood pump that will be able to help a diseased human heart to maintain physiological blood flow and pressure. This device will be used as a totally or partially implantable VAD. Therefore, performance assurance and correct specification of the VAD are important factors in achieving a safe interaction between the device and the patient’s behavior or condition. Even with reliable devices, some failures may occur if the pumping control does not keep up with changes in the patient’s behavior or condition. If the VAD control system has no fault tolerance and no system dynamic adaptation that occurs according to changes in the patient’s cardiovascular system, a number of limitations can be observed in the results and effectiveness of these devices, especially in patients with acute comorbidities. This work proposes the application of a mechatronic approach to this class of devices based on advanced control, instrumentation, and automation techniques to define a method to develop a hierarchical supervisory control system capable of dynamically, automatically, and safely VAD control. For this methodology, concepts based on Bayesian networks (BN) were used to diagnose the patient’s cardiovascular system conditions, Petri nets (PN) to generate the VAD control algorithm, and safety instrumented systems to ensure the safety of the VAD system.


Author(s):  
Nicolas Neidert ◽  
Jakob Straehle ◽  
Daniel Erny ◽  
Vlad Sacalean ◽  
Amir El Rahal ◽  
...  

AbstractHistopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a “plug-and-play” manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.


2021 ◽  
pp. 351-359
Author(s):  
Tatiana Maslakovа ◽  
Alesya Vurasko ◽  
Inna Pervova ◽  
Pavel Maslakov ◽  
Ludmila Aleshina ◽  
...  

The study presented by the authors is devoted to the study of the properties and the possibility of using technical cellulose from non-wood plant raw materials as a solid-phase matrix to obtain solid-phase reactive indicator systems by the following methods: synthesis method on the base of a hetarylformazane immobilized on a cellulose matrix and development of analytical systems based on preconcentration of the determined metal ion by a matrix with subsequent its «revealing» by the formazan («revealing» method). The article focuses on determination of optimal combinations of chromogenic organic reagents (hetarylformazanes) and cellulose-based matrices for developing solid-phase reaction-based indicator systems. Adsorption features of formazan reagents onto cellulose matrices was studied. It has been established the relation between the reagent molecule structure, composition of cellulose matrix and analytical properties of the test-systems synthesized to determine metal ions. Different approaches were developed and applied to reveal the visually observable and easily measured effect due to cellulose properties as well as properties of hetarylformazanes fixed on the surface of the matrix. This fact allows to control sensitivity and selectivity of solid-phase reactive indicator systems for water quality assessment.


Sign in / Sign up

Export Citation Format

Share Document