small quantum
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 47)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Mahabubul Alam ◽  
Swaroop Ghosh

Quantum machine learning (QML) is promising for potential speedups and improvements in conventional machine learning (ML) tasks. Existing QML models that use deep parametric quantum circuits (PQC) suffer from a large accumulation of gate errors and decoherence. To circumvent this issue, we propose a new QML architecture called QNet. QNet consists of several small quantum neural networks (QNN). Each of these smaller QNN’s can be executed on small quantum computers that dominate the NISQ-era machines. By carefully choosing the size of these QNN’s, QNet can exploit arbitrary size quantum computers to solve supervised ML tasks of any scale. It also enables heterogeneous technology integration in a single QML application. Through empirical studies, we show the trainability and generalization of QNet and the impact of various configurable variables on its performance. We compare QNet performance against existing models and discuss potential issues and design considerations. In our study, we show 43% better accuracy on average over the existing models on noisy quantum hardware emulators. More importantly, QNet provides a blueprint to build noise-resilient QML models with a collection of small quantum neural networks with near-term noisy quantum devices.


Author(s):  
Jiaozi Wang ◽  
Wen-Ge Wang ◽  
Jiao Wang

Abstract Thermalization of isolated quantum systems has been studied intensively in recent years and significant progresses have been achieved. Here, we study thermalization of small quantum systems that interact with large chaotic environments under the consideration of Schrödinger evolution of composite systems, from the perspective of the zeroth law of thermodynamics. Namely, we consider a small quantum system that is brought into contact with a large environmental system; after they have relaxed, they are separated and their temperatures are studied. Our question is under what conditions the small system may have a detectable temperature that is identical with the environmental temperature. This should be a necessary condition for the small quantum system to be thermalized and to have a well-defined temperature. By using a two-level probe quantum system that plays the role of a thermometer, we find that the zeroth law is applicable to quantum chaotic systems, but not to integrable systems.


2021 ◽  
Vol 11 (23) ◽  
pp. 11386
Author(s):  
Kodai Shiba ◽  
Chih-Chieh Chen ◽  
Masaru Sogabe ◽  
Katsuyoshi Sakamoto ◽  
Tomah Sogabe

Quantum computing is suggested as a new tool to deal with large data set for machine learning applications. However, many quantum algorithms are too expensive to fit into the small-scale quantum hardware available today and the loading of big classical data into small quantum memory is still an unsolved obstacle. These difficulties lead to the study of quantum-inspired techniques using classical computation. In this work, we propose a new classification method based on support vectors from a DBSCAN–Deutsch–Jozsa ranking and an Ising prediction model. The proposed algorithm has an advantage over standard classical SVM in the scaling with respect to the number of training data at the training phase. The method can be executed in a pure classical computer and can be accelerated in a hybrid quantum–classical computing environment. We demonstrate the applicability of the proposed algorithm with simulations and theory.


Author(s):  
Chao Zheng

Abstract Parity-time-reversal (PT) symmetric quantum mechanics promotes the increasing research interest of non-Hermitian (NH) systems for the theoretical value, novel properties, and links to open and dissipative systems in various areas. Recently, anti-PT-symmetric systems and its featured properties start to be investigated. In this work, we develop the PT- and anti-PT symmetry to PT-arbitrary-phase symmetry (or PT-φ symmetry) for the first time, being analogous to bosons, fermions and anyons. It can also be seen as a complex extension of the PT-symmetry, unifying the PT and anti-PT symmetries and having properties intermediate between them. Many of the established concepts and mathematics in the PT-symmetric system are still compatible. We mainly investigate quantum simulation of this novel NH-system of two-dimensions in detail and discuss for higher-dimensional cases in general using the linear combinations of unitaries in the scheme of duality quantum computing, enabling implementations and experimental investigations of novel properties on both small quantum devices and near-term quantum computers.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 584
Author(s):  
Charles Tahan

I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. Materials, fabrication, and control challenges still impede progress. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. This approach should allow us, in the shorter term, to characterize wafers non-invasively for their qubit-relevant properties, to make small qubit systems on various different materials with little extra cost, and even to test spin-qubit to superconducting cavity entanglement protocols where the best possible cavity quality is preserved. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers. This article may also be useful as a light and light-hearted introduction to quantum dot spin qubits.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2482
Author(s):  
Soronzonbold Otgonbaatar ◽  
Mihai Datcu

Satellite instruments monitor the Earth’s surface day and night, and, as a result, the size of Earth observation (EO) data is dramatically increasing. Machine Learning (ML) techniques are employed routinely to analyze and process these big EO data, and one well-known ML technique is a Support Vector Machine (SVM). An SVM poses a quadratic programming problem, and quantum computers including quantum annealers (QA) as well as gate-based quantum computers promise to solve an SVM more efficiently than a conventional computer; training the SVM by employing a quantum computer/conventional computer represents a quantum SVM (qSVM)/classical SVM (cSVM) application. However, quantum computers cannot tackle many practical EO problems by using a qSVM due to their very low number of input qubits. Hence, we assembled a coreset (“core of a dataset”) of given EO data for training a weighted SVM on a small quantum computer, a D-Wave quantum annealer with around 5000 input quantum bits. The coreset is a small, representative weighted subset of an original dataset, and its performance can be analyzed by using the proposed weighted SVM on a small quantum computer in contrast to the original dataset. As practical data, we use synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and a Polarimetric Synthetic Aperture Radar (PolSAR) image of San Francisco. We measured the closeness between an original dataset and its coreset by employing a Kullback–Leibler (KL) divergence test, and, in addition, we trained a weighted SVM on our coreset data by using both a D-Wave quantum annealer (D-Wave QA) and a conventional computer. Our findings show that the coreset approximates the original dataset with very small KL divergence (smaller is better), and the weighted qSVM even outperforms the weighted cSVM on the coresets for a few instances of our experiments. As a side result (or a by-product result), we also present our KL divergence findings for demonstrating the closeness between our original data (i.e., our synthetic data, Iris data, hyperspectral image, and PolSAR image) and the assembled coreset.


2021 ◽  
Author(s):  
Patrik Grychtol ◽  
Daniel Rivas ◽  
Thomas Baumann ◽  
Rebecca Boll ◽  
Alberto De Fanis ◽  
...  

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Behnam Pourhassan ◽  
Salman Sajad Wani ◽  
Saheb Soroushfar ◽  
Mir Faizal

Abstract In this paper, we will obtain quantum work for a quantum scale five dimensional Myers-Perry black hole. Unlike heat represented by Hawking radiation, the quantum work is represented by a unitary information preserving process, and becomes important for black holes only at small quantum scales. It will be observed that at such short distances, the quantum work will be corrected by non-perturbative quantum gravitational corrections. We will use the Jarzynski equality to obtain this quantum work modified by non-perturbative quantum gravitational corrections. These non-perturbative corrections will also modify the stability of a quantum Myers-Perry black hole. We will define a quantum corrected information geometry by incorporating the non-perturbative quantum corrections in the information geometry of a Myers-Perry black hole. We will use several different quantum corrected effective information metrics to analyze the stability of a quantum Myers-Perry black hole.


Author(s):  
C. BLANCHET ◽  
M. DE RENZI ◽  
J. MURAKAMI

AbstractWe provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of $$ \mathfrak{sl} $$ sl 2 at a root of unity q of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −q − q−1.


Sign in / Sign up

Export Citation Format

Share Document