clinical resistance
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 117)

H-INDEX

61
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Sanju Sinha ◽  
Rahulsimham vegesna ◽  
Saugato Rahman Dhruba ◽  
Wei Wu ◽  
D. Lucas Kerr ◽  
...  

Tailoring the best treatments to cancer patients is an important open challenge. Here, we build a precision oncology data science and software framework for PERsonalized single-Cell Expression-based Planning for Treatments In Oncology (PERCEPTION). Our approach capitalizes on recently published matched bulk and single-cell transcriptome profiles of large-scale cell-line drug screens to build treatment response models from patient single-cell (SC) tumor transcriptomics. First, we show that PERCEPTION successfully predicts the response to monotherapy and combination treatments in screens performed in cancer and patient-tumor-derived primary cells based on SC-expression profiles. Second, it successfully stratifies responders to combination therapy based on the patient tumor SC-expression in two very recent multiple myeloma and breast cancer clinical trials. Thirdly, it captures the development of clinical resistance to five standard tyrosine kinase inhibitors using tumor SC-expression profiles obtained during treatment in a lung cancer patient cohort. Notably, PERCEPTION outperforms state-of-the-art bulk expression-based predictors in all three clinical cohorts. In sum, this study provides a first-of-its-kind conceptual and computational method that is predictive of response to therapy in patients, based on the clonal SC gene expression of their tumors.


Author(s):  
Yihsuan S. Tsai ◽  
Mark G. Woodcock ◽  
Salma H. Azam ◽  
Leigh B. Thorne ◽  
Krishna L. Kanchi ◽  
...  
Keyword(s):  

Author(s):  
Antonio Passaro ◽  
Julie Brahmer ◽  
Scott Antonia ◽  
Tony Mok ◽  
Solange Peters

A proportion of patients with lung cancer experience long-term clinical benefit with immune checkpoint inhibitors (ICIs). However, most patients develop disease progression during treatment or after treatment discontinuation. Definitions of immune resistance are heterogeneous according to different clinical and biologic features. Primary resistance and acquired resistance, related to tumor-intrinsic and tumor-extrinsic mechanisms, are identified according to previous response patterns and timing of occurrence. The clinical resistance patterns determine differential clinical approaches. To date, several combination therapies are under development to delay or prevent the occurrence of resistance to ICIs, including the blockade of immune coinhibitory signals, the activation of those with costimulatory functions, the modulation of the tumor microenvironment, and the targeting T-cell priming. Tailoring the specific treatments with distinctive biologic resistance mechanisms would be ideal to improve the design and results of clinical trial. In this review, we reviewed the available evidence on immune resistance mechanisms, clinical definitions, and management of resistance to ICIs in lung cancer. We also reviewed data on novel strategies under investigation in this setting.


2022 ◽  
Author(s):  
Samson Ghilu ◽  
Christopher L. Morton ◽  
Angelina V. Vaseva ◽  
Siyuan Zheng ◽  
Raushan T. Kurmasheva ◽  
...  

Aim: Despite aggressive multiagent protocols, patients with metastatic rhabdomyosarcoma (RMS) have poor prognosis. In a recent high-risk trial (ARST0431), 25% of patients failed within the first year, while on therapy and 80% had tumor progression within 24 months. However, the mechanisms for tumor resistance are essentially unknown. Here we explore the use of preclinical models to develop resistance to complex chemotherapy regimens used in ARST0431. Methods: A Single Mouse Testing (SMT) protocol was used to evaluate the sensitivity of 34 RMS xenograft models to one cycle of vincristine, actinomycin D, cyclophosphamide (VAC) treatment. Tumor response was determined by caliper measurement, and tumor regression and event-free survival (EFS) were used as endpoints for evaluation. Treated tumors at regrowth were transplanted into recipient mice, and the treatment was repeated until tumors progressed during the treatment period (i.e., became resistant). At transplant, tumor tissue was stored for biochemical and omics analysis. Results: The sensitivity to VAC of 34 RMS models was determined. EFS varied from 3 weeks to > 20 weeks. Tumor models were classified as having intrinsic resistance, intermediate sensitivity, or high sensitivity to VAC therapy. Resistance to VAC was developed in multiple models after 2-5 cycles of therapy; however, there were examples where sensitivity remained unchanged after 3 cycles of treatment. Conclusion: The SMT approach allows for in vivo assessment of drug sensitivity and development of drug resistance in a large number of RMS models. As such, it provides a platform for assessing in vivo drug resistance mechanisms at a “population” level, simulating conditions in vivo that lead to clinical resistance. These VAC-resistant models represent “high-risk” tumors that mimic a preclinical phase 2 population and will be valuable for identifying novel agents active against VAC-resistant disease.


2021 ◽  
Author(s):  
Ferenc Takács ◽  
Lili Kotmayer ◽  
Ágnes Czeti ◽  
Gábor Szalóki ◽  
László Tamás ◽  
...  

Abstract Purpose: Bruton’s tyrosine kinase inhibitor ibrutinib has revolutionized the treatment of chronic lymphocytic leukemia (CLL). Although ibrutinib is a highly effective drug, during the treatment acquired ibrutinib resistance may occur and its early detection is an important issue. Our aim was to investigate several phenotypic markers on CLL cells to reveal changes in their expression during ibrutinib treatment.Methods: In our study 28 (treatment naive, ibrutinib sensitive, clinically ibrutinib resistant) peripheral blood (PB), and 6 paired PB and bone marrow (BM) samples were examined. The expression of several surface markers (CD69, CD184, CD86, CD185, CD27) was assessed by flow cytometry in each sample. Furthermore, the presence of the BTKC481S resistance mutation was tested using digital droplet PCR. In addition, we investigated the changes of the phenotype of CLL cells during ibrutinib treatment in one patient with acquired ibrutinib resistance.Results: The expression of CD27 decreased during ibrutinib therapy but increased again at the onset of clinical resistance. Expressions of CD69 and CD86 were also elevated at the onset of clinical ibrutinib resistance. The expression of CD86 showed correlation between PB and BM samples. Relapsed cases with high CD86 expression were positive for BTKC481S mutation. Our prospective study showed that the increases in the expression of CD27, CD69 and CD86 were detectable up to several months before the onset of clinical resistance.Conclusion: Our research suggests that the flow cytometric measurements of certain markers, especially CD86, may predict development of ibrutinib resistance, however, confirmatory experiments are still required.


2021 ◽  
Author(s):  
Andrea Jane Bardwell ◽  
Beibei Wu ◽  
Kavita Y Sarin ◽  
Marian L Waterman ◽  
Scott X Atwood ◽  
...  

There is considerable evidence that cross-talk between the Hedgehog pathway and MAPK signaling pathways occurs in several types of cancer, and contributes to the emergence of clinical resistance to Hedgehog pathway inhibitors. Here, we demonstrate that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. We show that ERK2 phosphorylates GLI1 on three evolutionarily-conserved target sites (S102, S116 and S130) located near the high-affinity binding site for the negative regulator SUFU; furthermore, these phosphorylation events cooperate to weaken the affinity of GLI1-SUFU binding by over 25 fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily-conserved SUFU-affinity-modulating region. In cultured mammalian cells, mutant GLI1 variants containing phosphomimetic substitutions of S102, S116 and S130 displayed an increased ability to drive transcription. We conclude that of multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.


2021 ◽  
Vol 11 ◽  
Author(s):  
Emanuela Andretta ◽  
Caterina Costa ◽  
Consiglia Longobardi ◽  
Sara Damiano ◽  
Antonio Giordano ◽  
...  

Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, continued use of these inhibitors has contributed to the increase in clinical resistance and the persistence of resistant leukemic stem cells (LSCs). So, there is an urgent need to introduce additional targeted and selective therapies to eradicate quiescent LSCs, and to avoid the relapse and disease progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL targeted drugs employed in clinical trials and on alternative CML treatments, including antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from marine organisms that could pave the way for new therapeutic approaches for CML patients.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Tom Armstrong ◽  
Samuel Jacob Fenn ◽  
Kim R. Hardie

Carbapenems are potent members of the β-lactam family that inhibit bacterial cell-wall biosynthesis inhibitors . They are highly effective against Gram-negative and Gram-positive drug-resistant infections . As such, carbapenems are typically reserved as an antibiotic of last resort. The WHO lists meropenem as an essential medicine. Nausea and vomiting are reported in ≤20% of carbapenem recipients, with 1.5% suffering seizures. Enzymatic hydrolysis of the β-lactam ring is the main driver of clinical resistance. These enzymes can be classified as Class A, B and D. Classes A and D are serine β-lactamases, whereas Class B rely on metal-mediated hydrolysis, typically through zinc.


Author(s):  
Monica M. Kangussu-Marcolino ◽  
Upinder Singh

Dysentery caused by Entamoeba histolytica affects millions of people annually. Current treatment regimens are based on metronidazole to treat invasive parasites combined with paromomycin for luminal parasites. Issues with treatment include significant side effects, inability to easily treat breastfeeding and pregnant women, the use of two sequential agents, and concern that all therapy is based on nitroimidazole agents with no alternatives if clinical resistance emerges. Thus, the need for new drugs against amebiasis is urgent. To identify new therapeutic candidates, we screened the ReFRAME library (11,948 compounds assembled for Repurposing, Focused Rescue, and Accelerated Medchem) against E. histolytica trophozoites. We identified 159 hits in the primary screen at 10 μM and 46 compounds were confirmed in secondary assays. Overall, 26 were selected as priority molecules for further investigation including 6 FDA approved, 5 orphan designation, and 15 which are currently in clinical trials (3 phase III, 7 phase II and 5 phase I). We found that all 26 compounds are active against metronidazole resistant E. histolytica and 24 are able to block parasite recrudescence after drug removal. Additionally, 14 are able to inhibit encystation and 2 (lestaurtinib and LY-2874455) are active against mature cysts. Two classes of compounds are most interesting for further investigations: the Bcr-Abl TK inhibitors, with the ponatinib (EC 50 0.39) as most potent and mTOR or PI3K inhibitors with 8 compounds in clinical development, of which 4 have nanomolar potency. Overall, these are promising candidates and represent a significant advance for drug development against E. histolytica .


Author(s):  
S. S. Andreev ◽  
T. K. Isaev ◽  
R. N. Trushkin ◽  
D. F. Kantimerov

Introduction. At the end of 2019, the world faced a pandemic of infection caused by the SARS-CoV-2 coronavirus. The disease caused by this virus is referred to as COVID-19, and is characterized by multiorgan lesion. The leading syndrome is the syndrome of immune response disregulation or the «cytokine storm». According to the studies, which were used as the basis of patient management clinical protocols, antiinterleukin-6 agents, and glucocorticosteroids, are the most effective in stopping the «cytokine storm». At the same time, the use of immunosuppressive drugs increases the risk of secondary infectious complications not associated with the COVID-19 viral infection.The aim of the study was to present a successful case of treating a secondary bacterial infection in a patient with a severe new coronavirus infection in the context of a limited choice of antimicrobial therapy.Materials and methods. The report presents a clinical case of a complicated urinary tract infection associated with an extremely resistant Kl.pneumoniae strain in a 58-year-old patient hospitalized with severe COVID-19. Due to comorbidity, combined with long-term hospitalization, the need in immunosuppressive therapy, and long-term catheterization of the urinary tract, the patient got affected by Kl.pneumoniae. This pathogen demonstrated microbiological and clinical resistance to all studied classes of antibiotics, including carbapenems, aminoglycosides and polymyxins. The patient developed an abscess of the prostate, and orchiepididymitis, which required repeated surgical interventions.Results and Discussion. The multidisciplinary approach to patient treatment, as well as the use of local and regional epidemiological data made it possible to choose the most effective drug therapy. The combination of adequate surgical debridement and combined antibiotic therapy (ceftazidime/avibactam and aztreonam) led to regression of the complicated urinary tract infection manifestations and clinical recovery.Conclusions. The use of ceftazidime/avibactam and aztreonam combination is a promising therapeutic option for the treatment of infections caused by extremely resistant strains of Enterobacterales, in which the combined production of serine proteases and metallobetalactamases is expected.


Sign in / Sign up

Export Citation Format

Share Document