floating offshore wind turbines
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 245)

H-INDEX

16
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
pp. 1207-1228
Author(s):  
Alexandra Ciuriuc ◽  
José Ignacio Rapha ◽  
Raúl Guanche ◽  
José Luis Domínguez-García

Author(s):  
Alwin Jose ◽  
Jeffrey M. Falzarano

Abstract Floating Offshore Wind Turbines (FOWTs) are susceptible to an instability which has come to be called negative damping. Conventional land based wind turbine controllers when used with FOWTs may cause large amplitude platform pitch oscillations. Most controllers have since been improved to reduce motions due to this phenomenon. In this paper, the motions induced using one of the original controllers is studied. The current study is performed using the coupled time domain program FAST-SIMDYN that was developed in Marine Dynamics Laboratory (MDL) at Texas A&M University. It is capable of studying large amplitude motions of Floating Offshore Wind Turbines. FOWTs use various controller algorithms of operation based on the available wind speed depending on various power output objectives i.e., to either maximize or level out power absorption. It is observed that the transition region for controllers is often chaotic. So most studies focus on operations away from the transition region below and above the transition wind speeds. Here we study the transition region using the theoretical insight of non-linear motion response of structures. This study reveals the presence of a very interesting and potentially hazardous nonlinear phenomenon, bifurcation. This finding could help explain the chaotic motion response that is observed in the transition region of controllers. Understanding the nature and cause of bifurcation could prove very useful for future design of FOWT controllers.


2022 ◽  
Author(s):  
Kelsey Shaler ◽  
Benjamin Anderson ◽  
Luis A. Martinez-Tossas ◽  
Emmanuel Branlard ◽  
Nick Johnson

Abstract. Throughout wind energy development, there has been a push to increase wind turbine size due to the substantial economic benefits. However, increasing turbine size presents several challenges, both physically and computationally. Modeling large, highly flexible wind turbines requires highly accurate models to capture the complicated aerodynamic response due to large deflections and nonstraight blade geometries. Additionally, development of floating offshore wind turbines requires modeling techniques that can predict large rotor and tower motion. Free vortex wake (FVW) methods model such complex physics while remaining computationally tractable to perform the many simulations necessary for the turbine design process. Recently, a FVW model—cOnvecting LAgrangian Filaments (OLAF)—was added to the National Renewable Energy Laboratory engineering tool OpenFAST to allow for the aerodynamic modeling of highly flexible turbines along with the aerohydro- servo-elastic response capabilities of OpenFAST. In this work, FVW and low-fidelity blade-element momentum (BEM) structural results are compared to high-fidelity simulation results for a highly-flexibly downwind turbine for varying TI, shear exponent, and yaw misalignment conditions. Through these comparisons, it was found that for all considered quantities of interest, SOWFA, OLAF, and BEM results compare well for steady inflow conditions with no yaw misalignment. For OLAF results, this strong agreement was consistent for all yaw misalignment values. The BEM results, however, deviated significantly more from SOWFA results with increasing absolute yaw misalignment. Differences between OLAF and BEM results were dominated by yaw misalignment angle, with varying shear exponent and TI leading to more subtle differences. Overall, OLAF results were more consistent than BEM results when compared to SOWFA results under challenging inflow conditions.


Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Abstract Floating offshore wind turbines (FOWTs) are subject to undesirable platform motion and significant increase in fatigue loads compared to their onshore counterparts. We have recently proposed using the Fishing Line Artificial Muscle (FLAM) actuators to realize active mooring line force control (AMLFC) for platform stabilization and thus load reduction, which features compact design and no need for turbine redesign. However, as for the thermally activated FLAM actuators, a major control challenge lies in the asymmetric dynamics for the heating and the cooling half cycle of operation. In this paper, for a tension-leg platform (TLP) based FOWT with FLAM actuator based AMLFC, a hybrid dynamic model is obtained with platform pitch and roll degrees of freedom included. Then a hybrid model predictive control (HMPC) strategy is proposed for platform motion stabilization, with preview information on incoming wind and wave. A move blocking scheme is used to achieve reasonable computational efficiency. FAST based simulation study is performed using the NREL 5 MW wind turbine model. Under different combinations of wind speed, wave height and wind directions, simulation results show that the proposed control strategy can significantly reduce the platform roll and tower-base side-to-side bending moment, with mild level of actuator power consumption.


2022 ◽  
Vol 119 (1) ◽  
pp. 123-143
Author(s):  
Zhen Lei ◽  
Xinbao Wang ◽  
Shuni Zhou ◽  
Zekun Wang ◽  
Tengyuan Wang ◽  
...  

2022 ◽  
Vol 355 ◽  
pp. 03068
Author(s):  
A.P. Crowle ◽  
PR Thies

The construction and installation engineering of floating offshore wind turbines is important to minimize schedules and costs. Floating offshore wind turbine substructures are an expanding sector within renewable power generation, offering an opportunity to deliver green energy, in new areas offshore. The floating nature of the substructures permits wind turbine placement in deep water locations. This paper investigates the construction and installation challenges for the various floating offshore wind types. It is concluded that priority areas for project management and design engineers minimising steel used in semi submersible construction, reducing the floating draft of Spars and for Tension Leg Platforms developing equipment for a safe installation. Specifically tailored design for construction and installation includes expanding the weather window in which these floating substructures can be fabricated, transported to and from offshore site and making mooring and electrical connection operations simpler. The simplification of construction methodology will reduce time spent offshore and minimise risks to installation equipment and personnel. The paper will include the best practice for ease of towing for offshore installation and the possible return to port for maintenance. The construction and installation process for a floating offshore wind turbine varies with substructure type and this will be developed in more detail in the paper. Floating offshore wind structures require an international collaboration of shipyards, ports and construction vessels, though to good project management. It is concluded that return to port for maintenance is possible for semi submersibles and barges whereas for Spars and TLP updated equipment is required to carry out maintenance offshore. In order to facilitate the construction and to minimize costs, the main aspects have to be considered i.e., the required construction vessel types, the distance from fit-out port to site and the weather restrictions.


2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Vincenzo Piscopo ◽  
Antonio Scamardella ◽  
Giovanni Battista Rossi ◽  
Francesco Crenna ◽  
Marta Berardengo

The fatigue assessment of mooring lines for floating offshore wind turbines represents a challenging issue not only for the reliable design of the stationkeeping system but also for the economic impact on the installation and maintenance costs over the entire lifetime of the offshore wind farm. After a brief review about the state-of-art, the nonlinear time-domain hydrodynamic model of floating offshore wind turbines moored by chain cables is discussed. Subsequently, the assessment of the fatigue damage in the mooring lines is outlined, focusing on the combined-spectrum approach. The relevant fatigue parameters, due to the low- and wave-frequency components of the stress process, are estimated by two different methods. The former is based on the time-domain analysis of the filtered stress process time history. The latter, instead, is based on the spectral analysis of the stress process by two advanced methods, namely the Welch and Thomson ones. Subsequently, a benchmark study is performed, assuming as reference floating offshore wind turbine the OC4-DeepCWind semisubmersible platform, equipped with the 5 MW NREL wind turbine. The cumulative fatigue damage is determined for eight load conditions, including both power production and parked wind turbine situations. A comparative analysis between time-domain and spectral analysis methods is also performed. Current results clearly show that the endorsement of advanced spectral analysis methods can be helpful to improve the reliability of the fatigue life assessment of mooring lines.


Sign in / Sign up

Export Citation Format

Share Document