acid and bile tolerance
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 6 (1) ◽  
pp. 106-117
Author(s):  
Usman Pato ◽  
Dewi Fortuna Ayu ◽  
Emma Riftyan ◽  
Fajar Restuhadi ◽  
Wasisso Tunggul Pawenang ◽  
...  

This work aimed to analyze the physicochemical properties of cellulose from OPT used in the fabrication of CMF and evaluate the efficacy of the hydrogel CMF as an encapsulant for L. fermentum InaCC B1295 stored at room temperature and in the refrigerator. The Kjeldahl method was used to evaluate the protein content; the gravimetric method was used to determine OPT's ash, moisture, and fiber contents; the Soxhlet method was used to determine the fat content carbohydrates were computed using the difference method. The levels of holocellulose, lignin, and cellulose were also determined. Viability, acid and bile resistance of strain B1295 were evaluated at various temperatures for 35 days. The most abundant component of OPT fiber was cellulose, followed by hemicellulose and lignin. XRD examination revealed that OPT cellulose has a crystal index of 83.40%. FTIR analysis was used to detect the stretching vibrations of the –OH group on cellulose at 3419.03 cm-1. CMF hydrogel from OPT sustained L. fermentum InaCC B1295 survival for up to 28 days at room and refrigerated temperatures. At acidic conditions and in the presence of bile, the viability of L. fermentum InaCC B1295 was excellent, with a drop in cell population of less than 0.2 log CFU/g over 35 days at room and refrigerated temperatures. CMF obtained from OPT can be used as an encapsulant to maintain viability, acid resistance and bile of probiotics. There is still a need for research into the usage of CMF from OPT in combination with other encapsulants to extend the storage life of L. fermentum InaCC B1295. Doi: 10.28991/ESJ-2022-06-01-08 Full Text: PDF


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2781
Author(s):  
Diletta Mazzantini ◽  
Francesco Celandroni ◽  
Marco Calvigioni ◽  
Adelaide Panattoni ◽  
Roberto Labella ◽  
...  

The quality control of probiotic products is the focus of numerous organizations worldwide. Several studies have highlighted the poor microbiological quality of many commercial probiotic formulations in terms of the identity of the contained microorganisms, viability, and purity, thus precluding the expected health benefits and representing a potential health risk for consumers. In this paper, we analyzed the contents of two probiotic formulations, one composed of an encapsulated mixture of lactobacilli and bifidobacteria, and one by a lyophilized yeast. The microorganisms contained in the products were quantified and identified using up-to-date methodologies, such as MALDI-TOF MS and metagenomic analysis. Moreover, as acid and bile tolerance is included among the criteria used to select probiotic microorganisms, in vitro tests were performed to evaluate the behavior of the formulations in conditions mimicking the harsh gastric environment and the intestinal fluids. Our results indicate the high quality of the formulations in terms of the enumeration and identification of the contained organisms, as well as the absence of contaminants. Moreover, both products tolerated the acidic conditions well, with encapsulation providing further protection for the microorganisms. A good tolerance to the simulated artificial intestinal conditions was also evidenced for both preparations.


Author(s):  
Marianne Stage ◽  
Yan Hui ◽  
Dennis Sandris Nielsen ◽  
Natalia Ivonne Vera-Jiménez ◽  
Jeanne Olsen ◽  
...  

Lacticaseibacillus rhamnosus GG is a widely marketed probiotic with well-documented probiotic properties. Previously, deletion of the mucus-adhesive spaCBA-srt C1 genes was reported in dairy isolates. Here, we examined the genome preservation of industrially-produced L. rhamnosus GG (DSM 33156) co-fermented in yogurts. In total, DNA of 66 samples, including 60 isolates, was sequenced. Population samples and 59 isolates exhibited an intact genome. One isolate exhibited loss of spaCBA-srt C1. In addition, we examined phenotypes related to the probiotic properties of L. rhamnosus GG either from frozen pellets or co-fermented in yogurt. L. rhamnosus GG from frozen pellets induced a response in intestinal barrier function in vitro , in contrast to frozen pellets of the starter culture. Yogurt matrix, containing only the starter culture, induced a response, but co-fermentation with L. rhamnosus GG induced a higher response. Conversely, only the starter culture stimulated cytokine secretion in dendritic cells, and it was observed that the addition of L. rhamnosus GG to the starter culture reduced the response. We conclude that the L. rhamnosus GG genome is preserved in yogurt and that common in vitro probiotic effects of L. rhamnosus GG are observed when examined in the yogurt matrix. Importance Lacticaseibacillus rhamnosus GG is a well-documented probiotic strain recognized for its high acid and bile tolerance and adhesion properties to enterocytes and mucus. The strain exhibits SpaCBA pili, which have been demonstrated to play an important role in adhesion and therefore are relevant for persistence in the gastrointestinal tract. Recently we demonstrated that the genome and phenotypes of L. rhamnosus GG are preserved throughout an industrial production pipeline. However, as gene deletions in L. rhamnosus GG were previously reported in isolates from dairy products, a key question on the genomic stability of L. rhamnosus GG in a yogurt matrix remained. The aim of this study was to analyze genome stability and phenotypic characteristics of L. rhamnosus GG in yogurt. We found that the genome of L. rhamnosus GG is well conserved when co-fermented in yogurt. Some phenotypic characteristics are consistent in all product matrixes, while other characteristics are modulated.


2021 ◽  
Author(s):  
Ahmet E. Yetiman ◽  
Abdullah KESKİN ◽  
Busra Nur DARENDELI ◽  
Seyfullah Enes KOTIL ◽  
Fatih ORTAKCI ◽  
...  

Abstract A new Lb. plantarum strain DY46 was isolated from a traditionally fermented non-alcoholic beverage called shalgam from the Southern region of Anatolia following incubation on MRS agar at 30°C for 5 days. DY46 is gram-positive, short rod and catalase-negative. This bacterium fermented 22 of the 49 substrates tested on API CH50 fermentation panels. Whole-genome sequencing was performed using the Illumina Miseq platform to learn more about the metabolic capabilities of DY46. The sequences were assembled into a 3.32 Mb draft genome using PATRIC 3.6.8. consisting of 153 contigs, and preliminary genome annotation was performed using the RAST algorithm. The DY46 genome consists of a single circular chromosome of 3,332,827 bp that is predicted to carry 3219 genes, including 61 tRNA genes, 2 rRNA operons. The genome has a GC content of 44.3% includes 98 predicted pseudogenes, 25 complete or partial transposases and 3 intact prophages. DY46 genome also predicted to carry genes of Plantaricin-E, Plantaricin-F and Plantaricin-K showing the antimicrobial potential of this bacterium which can be linked-to in vitro antagonism tests that DY46 can inhibit Salmonella Typimirium ATCC14028, Klebsiella pneumonie ATCC13883, and Proteus vulgaris ATCC8427. The acid and bile tolerance of DY46 revealed this strain could potentially pass through the stomach and reach into the gut to provide probiotic therapeutic affects on health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhibo Zeng ◽  
Xiaoling He ◽  
Feiran Li ◽  
Yan Zhang ◽  
Zonghao Huang ◽  
...  

Yaks (Bos grunniens) live primarily in high-altitude hypoxic conditions and have a unique intestinal micro-ecosystem, remarkable adaptability, and strong climatic resistance. Accumulating evidence revealed the importance of probiotics in host metabolism, gut microbiota, growth performance, and health. The goal of this study was to screen out probiotics with excellent probiotic potential for clinical application. In this study, four strains of Bacillus, i.e., Bacillus proteolyticus (named Z1 and Z2), Bacillus amyloliquefaciens (named J), and Bacillus subtilis (named K), were isolated and identified. Afterward, their probiotic potential was evaluated. Antioxidant activity tests revealed that Z1 had the highest DPPH and hydroxyl radical scavenging activity, whereas Z2 had higher reducing power and inhibited lipid peroxidation. Additionally, the antibacterial testing revealed that all strains were antagonistic to three indicator pathogens, Escherichia coli C83902, Staphylococcus aureus BNCC186335, and Salmonella enteritidis NTNC13349. These isolates also had a higher hydrophobicity, autoaggregation, and acid and bile tolerance, all of which helped to survive and keep dangerous bacteria out of the host intestine. Importantly, all strains could be considered safe in terms of antibiotic susceptibility and lack of hemolysis. In conclusion, this is the first study to show that B. proteolyticus and B. amyloliquefaciens isolated from yaks have probiotic potential, providing a better foundation for future clinical use.


2021 ◽  
pp. e248
Author(s):  
Dipanwita Bhattacharjee ◽  
Barun Bhattacharyya

The probiotic organisms are now used widely for different clinical indications. In an attempt to isolate a good probiotic strain for therapeutic applications, we have screened several isolates having probiotic attributes. The essential probiotic characters such as lactic acid production, antimicrobial activity, acid and bile tolerance, vitamin B12 production and antibiotic resistance pattern were considered as parameters for screening of probiotic bacteria from its natural habitats. Considering the said probiotic properties the strain EIPW5A was selected for the present study. The organism was identified as Lactobacillus fermentum based on its morphological, biochemical, physiological characters and 16S rRNA gene sequencing results.


2021 ◽  
pp. 75-85
Author(s):  
I. A. Adesokan ◽  
A. I. Sanni ◽  
S. S. Kanwar

Probiotics are living microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Before an organism can be designated as probiotic there are certain criteria that must be fulfilled. These include acid and bile tolerance, antimicrobial activity, ability to co-aggregate, hydrophobicity etc. One hundred and eighty one indigenous yeast isolates recovered from various fermented food products of Nigeria were characterized and grouped using phenotypic methods. Forty two selected yeast isolates were identified using molecular method which involved sequencing of D1 and D2 domain of the large subunit of ribosomal DNA. Then nine indigenous Saccharomyces cerevisiae were evaluated for their probiotic characteristics such as acid and bile tolerance, transit in simulated gastric and intestinal juices, autoaggregation and hydrophobicity. Saccharomyces cerevisiae SC10 was included as a positive control. The S. cerevisiae were able to grow in the presence of acidic medium with pH as low as 2 and 3. In the minimum inhibitory concentration test with 0-1% ox bile, all the S. cerevisiae tested were able to grow. The growth for 3% bile tolerance test ranged from 4.81 to 5.35 log cfu/ml. These isolates were able to survive in simulated gastro-intestinal transit. All the yeast isolates exhibited bile salt deconjugation activity against sodium glycodeoxycholate and were able to grow in the presence of all other bile salts investigated. Autoaggregation ability (an adhesive property) of the indigenous yeast isolates ranged from 89.80% for S. cerevisiae BK19 to 99.91% for S. cerevisiae OB03. The native yeast isolates also exhibited high percentage hydrophobicity, another adhesive property of probiotics. The values obtained ranged from 31.62 to 83.45% for isolates AG23A and OB 17. These observations indicate that the native yeast isolates from Nigerian fermented foods have the potential of being use as probiotics for making functional foods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Neha Baliyan ◽  
Kiran Dindhoria ◽  
Aman Kumar ◽  
Aman Thakur ◽  
Rakshak Kumar

Cereal-based traditional fermented beverages (TFBs) are prevalent among India’s ethnic community, and lugri is one such TFB popular among the tribal people of the Lahaul valley in North-Western Himalaya. Previous studies have reported that lugri harbors probiotics and contains amino acids and vitamins but comprehensive substrate-specific exploration of lugri for probiotic attributes is unexplored. The present study selected three substrate-based lugri (wheat, rice, and barley) to study their biochemical properties and explore potential probiotics. This study screened the best probiotic strains for antioxidant studies and the fermentative process. A biochemical analysis determined that rice-based lugri had a higher alcohol content, electric conductivity, crude protein, and lower pH than barley and wheat-based lugri. A total of 134 distinct morphotypes were screened, and 43 strains were selected based on their qualitatively superior acid and bile tolerance. Rice-based undistilled lugri harbored the most probiotics, with 22 out of 43 strains isolated. All 43 bacterial isolates exhibited properties like cell surface hydrophobicity, cell-auto aggregation, β-galactosidase, and exopolysaccharide production, supporting them as possible probiotics. Based on antibiotic susceptibility, hemolytic activity, and biofilm formation, all the bacterial strains were found to be non-pathogenic. Taxonomically, they ranged among eight distinct genera and 10 different species. Statistically, 12 isolates were found to be the most promising probiotic, and eight strains were isolated from rice-based undistilled lugri. Furthermore, the antioxidant activity of the promising isolates was tested, based on free-radical scavenging ability toward 2,2-diphenyl-1-picrylhydrazyl (4.39–16.41%) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (15.29–57.74%). The strain Lacticaseibacillus paracasei LUL:01 showed the best antioxidant activity and probiotic attributes, and hence was used for the production of fermented milk. The strain LUL:01 fermented the sterile milk within 18 h, and the viable count remained above the legal requirement of 6 log10 CFU/ml during 28 days storage at 4°C. The strain represents a suitable candidate for applying probiotic functional food formulation with several health benefits.


2021 ◽  
Vol 18 (1) ◽  
pp. 0035
Author(s):  
Maria Manik ◽  
Jamaran Kaban ◽  
Jansen Silalahi ◽  
Mimpin Ginting

Dengke Naniura is a traditional food from Sumatera Utara, Indonesia, that is produced through fermenting process, and this food is believed to contain high probiotics. The objective of the current research is to determine the potential of LAB as a probiotic that has been obtained from Dengke Naniura. Dengke Naniura was traditionally prepared from Cyprinus carpio. Four LABs have been successfully isolated from Dengke Naniura, such as D7DA3, D7B3, D7DBF and D7DN3. Those four LAB isolates were identified as Lactobacillus sp. This result has been confirmed by the non-spore forming bacterium, non-motile, and Gram-positive. Also, it has been supported by biochemical test, for the example Voges Proskauer, catalase test, Methyl Red test, and carbohydrate fermentation. Several tests have been performed for determining the properties of the isolated LABs as probiotic, for the example: physiological properties, acid and bile tolerance and antimicrobial activities. As a probiotic, the fermentation profile of the isolated LAB was evaluated, including titratable acidity, pH, and organoleptic test. The all four isolates show the ability to survive in the MRS broth medium at pH 2 and 3. At the pH 3, the isolates of D7B3 show the highest ability to survive; it is about 100%, after 2 hours of incubation time. This data is followed by D7DBF4 with value 90 and 24% at pH 3 and 2, respectively. Otherwise, the isolate of D7DN3 and D7DA3 shows the lowest value, it is about 55-58% and 52-58% at pH 3 and 2, respectively. The fermented milk has been successfully made from LAB that has been isolated from Dengke Naniura. The fermented milk prepared using D7DA3 and D7DN3 has consistence and odor as similar as yoghurt, otherwise the isolate of D7DB3 and D7DBF4 produced fermented milk that is too thick. The fermented milk prepared from these isolates, D7DA3, D7DBF4 and D7DN3 has a normal taste. The better taste has been obtained in the fermented milk that was prepared using D7B3 isolate. The fermented milk prepared using LAB and obtained from Dengke Naniura has titratable acidity of 0.92-1.15% with pH 4.03-4.60.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hyun-Jun Jang ◽  
Seungwoo Son ◽  
Jung-Ae Kim ◽  
Min Young Jung ◽  
Yeon-jae Choi ◽  
...  

Probiotics can modulate the composition of gut microbiota and benefit the host animal health in multiple ways. Lactic acid bacteria (LAB), mainly Lactobacillus and Bifidobacterium species, are well-known microbes with probiotic potential. In the present study, 88 microbial strains were isolated from canine feces and annotated. Among these, the four strains CACC517, 537, 558, and 566 were tested for probiotic characteristics, and their beneficial effects on hosts were evaluated both in vitro and in vivo; these strains exhibited antibiosis, antibiotic activity, acid and bile tolerance, and relative cell adhesion to the HT-29 monolayer cell line. Byproducts of these strains increased the viability and decreased oxidative stress in mouse and dog cell lines (RAW264.7 and DH82, respectively). Subsequently, when the probiotics were applied to the clinical trial, changes in microbial composition and relative abundance of bacterial strains were clearly observed in the experimental animals. Experimental groups before and after the application were obviously separated from PCA analysis of clinical results. Conclusively, these results could provide comprehensive understanding of the effects of probiotic strains (CACC517, 537, 558, and 566) and their industrial applications.


Sign in / Sign up

Export Citation Format

Share Document