chondrocyte death
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 21)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
Andrew J.T. Muir ◽  
Andrew J. Niehaus ◽  
Joseph W. Lozier ◽  
Sara L. Cole ◽  
Zarah A. Belacic ◽  
...  

Abstract OBJECTIVE To investigate the chondroprotective effects of autologous platelet-rich plasma (PRP), ampicillin-sulbactam (AmpS), or PRP combined with AmpS (PRP+AmpS) in an in vitro chondrocyte explant model of bovine Staphylococcus aureus–induced septic arthritis. SAMPLE Autologous PRP and cartilage explants obtained from 6 healthy, adult, nonlactating Jersey-crossbred cows. ProcedureS Autologous PRP was prepared prior to euthanasia using an optimized double centrifugation protocol. Cartilage explants collected from grossly normal stifle joints were incubated in synovial fluid (SF) alone, S aureus–inoculated SF (SA), or SA supplemented with PRP (25% culture medium volume), AmpS (2 mg/mL), or both PRP (25% culture medium volume) and AmpS (2 mg/mL; PRP+AmpS) for 24 hours. The metabolic activity, percentage of dead cells, and glycosaminoglycan content of cartilage explants were measured with a resazurin-based assay, live-dead cell staining, and dimethylmethylene blue assay, respectively. Treatment effects were assessed relative to the findings for cartilage explants incubated in SF alone. RESULTS Application of PRP, AmpS, and PRP+AmpS treatments significantly reduced S aureus–induced chondrocyte death (ie, increased metabolic activity and cell viability staining) in cartilage explants, compared with untreated controls. There were no significant differences in chondrocyte death among explants treated with PRP, AmpS, or PRP+AmpS. CLINICAL RELEVANCE In this in vitro explant model of S aureus–induced septic arthritis, PRP, AmpS, and PRP+AmpS treatments mitigated chondrocyte death. Additional work to confirm the efficacy of PRP with bacteria commonly associated with clinical septic arthritis in cattle as well as in vivo evaluation is warranted.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zihao Li ◽  
Ziyu Huang ◽  
He Zhang ◽  
Jinghan Lu ◽  
Yicheng Tian ◽  
...  

AbstractInstability and excessive use of the knee joint can cause osteoarthritis (OA). Reasonable exercise can enhance the stability of the knee joint and prevent and relieve the occurrence and development of OA. As a key switch for inflammation, P2X purinoceptor 7 (P2X7) has attracted much attention in studies of OA. Exercise can regulate P2X7 expression and activation. However, the role of P2X7 in exercise-based prevention and treatment of OA is unknown. We previously showed that moderate-intensity exercise can significantly alleviate OA symptoms. Accordingly, in this study, we evaluated the effects of exercise on P2X7 expression and activation in chondrocytes. Micro-computed tomography, hematoxylin, and eosin staining, Toluidine Blue O staining, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick-end labeling experiments showed that P2X7 expression was lower in the moderate-intensity exercise group than in the inflammation and low- and high-intensity exercise groups. Additionally, chondrocyte death, cartilage destruction, and the degree and severity of pyroptosis were significantly reduced, whereas autophagy levels were significantly increased in the moderate-intensity exercise group. Cell Counting Kit-8 assay, lactate dehydrogenase release, flow cytometry, enzyme-linked immunosorbent assay, cell fluorescence, western blot, reverse transcription-quantitative polymerase chain reaction, and transmission electron microscopy experiments showed that moderate activation of P2X7 promoted autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway and promoted autolysosome targeting for degradation of the inflammasome component NLRP3, thereby inhibiting pyroptosis. Additionally, the use of AMPK and mTOR activators and inhibitors indicated that the AMPK-mTOR signaling pathway, as the downstream of P2X7, played a key role in delaying the occurrence and development of OA. We propose that moderate-intensity exercise promoted chondrocyte autophagy through the P2X7/AMPK/mTOR signal axis to alleviate pyroptosis. Our findings provide novel insights into the positive and preventative effects of exercise on OA.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12188
Author(s):  
Deng Chen ◽  
Yaxin Zhang ◽  
Qun Lin ◽  
Duoyun Chen ◽  
Xiaolei Li ◽  
...  

Knee osteoarthritis (KOA) refers to a common disease in orthopaedics, whereas effective treatments have been rarely developed. As indicated from existing studies, chondrocyte death, extracellular matrix degradation and subchondral bone injury are recognized as the pathological basis of KOA. The present study aimed to determine the therapeutic effect of decellularized extracellular matrix-chitosan (dECM-CS) compound on KOA. In this study, rat knee cartilage was decellularized, and a satisfactory decellularized extracellular matrix was developed. As suggested from the in vitro experiments, the rat chondrocytes co-cultured with allogeneic dECM grew effectively. According to the results of the alamar blue detection, dECM did not adversely affect the viability of rat chondrocytes, and dECM could up-regulate the genes related to the cartilage synthesis and metabolism. As reported from the animal experiments, dECM-CS compound could protect cartilage, alleviate knee joint pain in rats, significantly delay the progress of KOA in rats, and achieve high drug safety. In brief, dECM-CS compound shows a good therapeutic effect on KOA.


2021 ◽  
Vol 9 (10) ◽  
pp. 232596712110405
Author(s):  
Richard M. Danilkowicz ◽  
Nicholas B. Allen ◽  
Nate Grimm ◽  
Dana L. Nettles ◽  
James A. Nunley ◽  
...  

Background: The most common first-line treatment of osteochondral lesions of the talus (OLTs) is microfracture. Although many patients do well with this procedure, a number fail and require reoperation. The mechanism of failure of microfracture is unknown, and to our knowledge there has been no research characterizing failed microfracture regarding histological and inflammatory makeup of these lesions that may contribute to failure. Purpose: To characterize the structural and biochemical makeup of failed microfracture lesions. Study Design: Case series; Level of evidence, 4. Methods: Specimens from 8 consecutive patients with symptomatic OLTs after microfracture who later underwent fresh osteochondral allograft transplantation were analyzed. For each patient, the failed microfracture specimen and a portion of the fresh allograft replacement tissue were collected. The allograft served as a control. Histology of the failed microfracture and the allograft replacement was scored using the Osteoarthritis Research Society International (OARSI) system. Surface roughness was also compared. In addition, tissue culture supernatants were analyzed for 16 secreted cytokines and matrix metalloproteinases (MMPs) responsible for inflammation, pain, cartilage damage, and chondrocyte death. Results: The OARSI grade, stage, and total score as well as surface smoothness were significantly worse in the failed microfracture sample, indicating better cartilage and bone morphology for the allografts compared with the failed microfracture lesions. Analyzed cytokines and MMPs were significantly elevated in the microfracture tissue culture supernatants when compared with fresh osteochondral tissue supernatants. Conclusion: These data demonstrate a significantly rougher cartilage surface, cartilage and subchondral bone histology that more closely resembles osteoarthritis, and elevated inflammatory cytokines and MMPs responsible for pain, inflammation, cartilage damage, and chondrocyte death when compared with fresh osteochondral allografts used as controls.


2021 ◽  
Vol 22 (17) ◽  
pp. 9239
Author(s):  
Jacqueline T. Hecht ◽  
Alka C. Veerisetty ◽  
Mohammad G. Hossain ◽  
Debabrata Patra ◽  
Frankie Chiu ◽  
...  

Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia associated with premature joint degeneration, is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 weeks, and articular chondrocyte death increased at 8 weeks while ER stress through CHOP was elevated by 12 weeks. Importantly, blockage of autophagy (pS6), the major mechanism that clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, a family of degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration, and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.


2021 ◽  
Author(s):  
Alexander Kotelsky ◽  
Anissa Elahi ◽  
Nejat Can ◽  
Ashley Proctor ◽  
Sandeep Mannava ◽  
...  

Objective: The objective of this study is to understand the role of altered in vivo mechanical environments in knee joints post anterior cruciate ligament (ACL)-injury in chondrocyte vulnerability against mechanical stimuli and in the progression of post-traumatic osteoarthritis (PT-OA). Methods: Differential in vivo mechanical environments were induced by unilateral ACL-injury (uni-ACL-I) and bilateral ACL-injury (bi-ACL-I) in 8-week-old female C57BL/6 mice. The gait parameters, the mechano-vulnerability of in situ chondrocytes, Youngs moduli of cartilage extracellular matrix (ECM), and the histological assessment of OA severity (OARSI score) were compared between control and experimental groups at 0~8-weeks post-ACL-injury. Results: We found that bi-ACL-I mice experience higher joint-loading on their both injured limbs, but uni-ACL-I mice balance their joint-loading between injured and uninjured hind limbs resulting in a reduced joint-loading during gait. We also found that at 4- and 8-week post-injury the higher weight-bearing hind limbs (i.e., bi-ACL-I) had the increased area of chondrocyte death induced by impact loading and higher OARSI score than the lower weight-bearing limbs (uni-ACL-I). Additionally, we found that at 8-weeks post-injury the ECM became stiffer in bi-ACL-I joints and softer in uni-ACL-I joints. Conclusions: Our results show that ACL-injured limbs with lower in vivo joint-loading develops PT-OA significantly slower than injured limbs with higher joint-loading during gait. Our data also indicate that articular chondrocytes in severe PT-OA are more fragile from mechanical impacts than chondrocytes in healthy or mild PT-OA. Thus, preserving physiologic joint-loads on injured joints will reduce chondrocyte death post-injury and may delay PT-OA progression.


Cartilage ◽  
2021 ◽  
pp. 194760352110218
Author(s):  
Meng Zhang ◽  
Wenjun Wang ◽  
Hui Wang ◽  
Yinan Liu ◽  
Zhengzheng Li ◽  
...  

Purpose: To explore the relationship between insulin-like growth factor (IGF)-1R expression and the pathological progression of Kashin-Beck disease (KBD). Design: KBD cartilage samples were collected from 5 patients. Additionally, T-2 toxin was administered to rats fed a selenium (Se)-deficient diet, and their knee joints were collected. Human C28/I2 chondrocytes and mouse hypertrophic ATDC5 chondrocytes were cultured in vitro and treated with T-2 toxin and Se supplementation. Subsequently, the cultured human and mouse chondrocytes were treated with the IGF-1R inhibitor, picropodophyllin. Chondrocyte death and caspase-3 activity were analyzed using flow cytometry and a specific kit, respectively. Protein and mRNA expression levels of IGF-1R and matrix molecules were measured using immunohistochemistry, western blotting, and quantitative real-time reverse transcription-polymerase chain reaction analyses. Results: The cartilages from patients with KBD and T-2 toxin-treated rats on a Se-deficient diet showed significantly decreased expression of IGF-1R compared to cartilages from controls. T-2 toxin decreased IGF-1R mRNA and protein levels in both C28/I2 and hypertrophic ATDC5 chondrocytes in a dose-dependent manner; however, Se supplementation reduced the decrease of IGF-1R induced by T-2 toxin. Furthermore, inhibition of IGF-1R resulted in chondrocyte death of C28/I2 and hypertrophic ATDC5 chondrocytes, as well as decreased type II collagen expression and increased MMP-13 expression at the mRNA and protein levels. Conclusion: Downregulation of IGF-1R was associated with KBD cartilage destruction. Therefore, inhibition of IGF-1R may mediate chondrocyte death and extracellular matrix degeneration related to the pathological progression of KBD.


2021 ◽  
Author(s):  
Jacqueline T Hecht ◽  
Alka C Veerisetty ◽  
Mohammad G Hossain ◽  
Debabrata Patra ◽  
Frankie Chiu ◽  
...  

Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia, associated with premature joint degeneration is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 wks. Articular chondrocyte death increased at 8 wks and ER stress through CHOP was elevated by 12 wks. Importantly, blockage of autophagy (pS6), the major mechanism which clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoo Saito ◽  
Kohei Nishitani ◽  
Hanako O. Ikeda ◽  
Shigeo Yoshida ◽  
Sachiko Iwai ◽  
...  

AbstractPost-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1050 ◽  
Author(s):  
Hui-Ying Luk ◽  
Casey Appell ◽  
Ming-Chien Chyu ◽  
Chung-Hwan Chen ◽  
Chien-Yuan Wang ◽  
...  

Osteoarthritis and sarcopenia are two major joint and skeletal muscle diseases prevalent during aging. Osteoarthritis is a multifactorial progressive degenerative and inflammatory disorder of articular cartilage. Cartilage protection and pain management are the two most important strategies in the management of osteoarthritis. Sarcopenia, a condition of loss of muscle mass and strength, is associated with impaired neuromuscular innervation, the transition of skeletal muscle fiber type, and reduced muscle regenerative capacity. Management of sarcopenia requires addressing both skeletal muscle quantity and quality. Emerging evidence suggests that green tea catechins play an important role in maintaining healthy joints and skeletal muscle. This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.


Sign in / Sign up

Export Citation Format

Share Document