frequent event
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 119)

H-INDEX

44
(FIVE YEARS 4)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Patrick Winnersbach ◽  
Aisa Hosseinnejad ◽  
Thomas Breuer ◽  
Tamara Fechter ◽  
Felix Jakob ◽  
...  

Background: Clot formation on foreign surfaces of extracorporeal membrane oxygenation systems is a frequent event. Herein, we show an approach that mimics the enzymatic process of endogenous nitric oxide (NO) release on the oxygenator membrane via a biomimetic, non-fouling microgel coating to spatiotemporally inhibit the platelet (PLT) activation and improve antithrombotic properties. This study aims to evaluate the potential of this biomimetic coating towards NO-mediated PLT inhibition and thereby the reduction of clot formation under flow conditions. Methods: Microgel-coated (NOrel) or bare (Control) poly(4-methyl pentene) (PMP) fibers were inserted into a test channel and exposed to a short-term continuous flow of human blood. The analysis included high-resolution PLT count, pooled PLT activation via β-Thromboglobulin (β-TG) and the visualization of remnants and clots on the fibers using scanning electron microscopy (SEM). Results: In the Control group, PLT count was significantly decreased, and β-TG concentration was significantly elevated in comparison to the NOrel group. Macroscopic and microscopic visualization showed dense layers of stable clots on the bare PMP fibers, in contrast to minimal deposition of fibrin networks on the coated fibers. Conclusion: Endogenously NO-releasing microgel coating inhibits the PLT activation and reduces the clot formation on PMP fibers under dynamic flow.


Author(s):  
Gabriel Anzer ◽  
Pascal Bauer

AbstractPasses are by far football’s (soccer) most frequent event, yet surprisingly little meaningful research has been devoted to quantify them. With the increase in availability of so-called positional data, describing the positioning of players and ball at every moment of the game, our work aims to determine the difficulty of every pass by calculating its success probability based on its surrounding circumstances. As most experts will agree, not all passes are of equal difficulty, however, most traditional metrics count them as such. With our work we can quantify how well players can execute passes, assess their risk profile, and even compute completion probabilities for hypothetical passes by combining physical and machine learning models. Our model uses the first 0.4 seconds of a ball trajectory and the movement vectors of all players to predict the intended target of a pass with an accuracy of $$93.0\%$$ 93.0 % for successful and $$72.0\%$$ 72.0 % for unsuccessful passes much higher than any previously published work. Our extreme gradient boosting model can then quantify the likelihood of a successful pass completion towards the identified target with an area under the curve (AUC) of $$93.4\%$$ 93.4 % . Finally, we discuss several potential applications, like player scouting or evaluating pass decisions.


2021 ◽  
Author(s):  
Sara Vanessa Bernhard ◽  
Katarzyna Seget-Trzensiok ◽  
Christian Kuffer ◽  
Dragomir B. Krastev ◽  
Lisa-Marie Stautmeister ◽  
...  

Abstract Background Whole genome doubling is a frequent event during cancer evolution and shapes the cancer genome due to the occurrence of chromosomal instability. Yet, erroneously arising human tetraploid cells usually do not proliferate due to p53 activation that leads to CDKN1A expression, cell cycle arrest, senescence and/or apoptosis. Methods To uncover the barriers that block the proliferation of tetraploids, we performed a RNAi mediated genome-wide screen in a human colorectal cancer cell line (HCT116). Results We identified 140 genes whose depletion improved the survival of tetraploid cells and characterized in depth two of them: SPINT2 and USP28. We found that SPINT2 is a general regulator of CDKN1A transcription via histone acetylation. Using mass spectrometry and immunoprecipitation, we found that USP28 interacts with NuMA1 and affects centrosome clustering. Tetraploid cells accumulate DNA damage and loss of USP28 reduces checkpoint activation, thus facilitating their proliferation. Conclusions Our results indicate three aspects that contribute to the survival of tetraploid cells: (i) increased mitogenic signaling and reduced expression of cell cycle inhibitors, (ii) the ability to establish functional bipolar spindles and (iii) reduced DNA damage signaling.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juanli Qiao ◽  
Yuan Tian ◽  
Xiaojing Cheng ◽  
Zhaojun Liu ◽  
Jing Zhou ◽  
...  

IntroductionSomatic copy number deletion (SCND) of CDKN2A gene is the most frequent event in cancer genomes. Whether CDKN2A SCND drives human cancer metastasis is far from clear. Hematogenous metastasis is the main reason of human gastric carcinoma (GC) death. Thus, prediction GC metastasis is eagerly awaited.MethodGC patients (n=408) enrolled in both a cross-sectional and a prospective cohorts were analysed. CDKN2A SCND was detected with a quantitative PCR assay (P16-Light). Association of CDKN2A SCND and GC metastasis was evaluated. Effect of CDKN2A SCND by CRISPR/Cas9 on biological behaviors of cancer cells was also studied.ResultsCDKN2A SCND was detected in 38.9% of GCs from patients (n=234) enrolled in the cross-sectional cohort. Association analysis showed that more CDKN2A SCND was recognized in GCs with hematogenous metastasis than those without (66.7% vs. 35.7%, p=0.014). CDKN2A SCND was detected in 36.8% of baseline pN0M0 GCs from patients (n=174) enrolled in the prospective study, the relationship between CDKN2A SCND and hematogenous metastasis throughout the follow-up period (62.7 months in median) was also significant (66.7% vs. 34.6%, p=0.016). Using CDKN2A SCND as a biomarker for predicting hematogenous metastasis of GCs, the prediction sensitivity and specificity were 66.7% and 65.4%. The results of functional experiments indicated that CDKN2A SCND could obviously downregulate P53 expression that consequently inhibited the apoptosis of MGC803 GC and HEK293T cells. This may account for hematogenous metastasis of GCs by CDKN2A SCND.ConclusionCDKN2A SCND may drive GC metastasis and could be used as a predictor for hematogenous metastasis of GCs.


2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Rodrigo Campos-Silva ◽  
Gaetano D’Urso ◽  
Olivier Delalande ◽  
Emmanuel Giudice ◽  
Alexandre José Macedo ◽  
...  

Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell’s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3′-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming-qiang Chu ◽  
Liu-chao Zhang ◽  
Qian Yuan ◽  
Ting-juan Zhang ◽  
Jing-dong Zhou

Abstract Background There is mounting evidence that demonstrated the association of aberrant NEDD4L expression with diverse human cancers. However, the expression pattern and clinical implication of NEDD4L in acute myeloid leukemia (AML) remains poorly defined. Methods We systemically determined NEDD4L expression with its clinical significance in AML by both public data and our research cohort. Moreover, biological functions of NEDD4L in leukemogenesis were further tested by in vitro experiments. Results By the public data, we identified that low NEDD4L expression was correlated with AML among diverse human cancers. Expression of NEDD4L was remarkably decreased in AML compared with controls, and was confirmed by our research cohort. Clinically, low expression of NEDD4L was correlated with greatly lower age, higher white blood cells, and higher bone marrow/peripheral blood blasts. Moreover, NEDD4L underexpression was positively correlated with normal karyotype, FLT3 and NPM1 mutations, but negatively associated with complex karyotype and TP53 mutations. Importantly, the association between NEDD4L expression and survival was also discovered in cytogenetically normal AML patients. Finally, a number of 1024 RNAs and 91 microRNAs were identified to be linked to NEDD4L expression in AML. Among the negatively correlated microRNAs, miR-10a was also discovered as a microRNA that may directly target NEDD4L. Further functional studies revealed that NEDD4L exhibited anti-proliferative and pro-apoptotic effects in leukemic cell line K562. Conclusions Our findings indicated that NEDD4L underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. Moreover, NEDD4L expression may be involved in leukemogenesis with potential therapeutic target value.


2021 ◽  
Author(s):  
Kristopher A Lofgren ◽  
Sreeja Sreekumar ◽  
E Charles Jenkins Jr ◽  
Kyle J Ernzen ◽  
Paraic A Kenny

Abstract Background The Epidermal Growth Factor Receptor ligand, Amphiregulin, is a key proliferative effector of estrogen receptor signaling in breast cancer and also plays a role in other malignancies. Amphiregulin is a single-pass transmembrane protein proteolytically processed by TACE/ADAM17 to release the soluble EGFR ligand, leaving a residual transmembrane stalk that is subsequently internalized. Methods Using phage display we identified antibodies that selectively recognize the residual transmembrane stalk of cleaved Amphiregulin. Conjugation with fluorescence labels and monomethyl auristatin E (MMAE) was used to study their intracellular trafficking and anti-cancer effects, respectively. Results We report the development of an antibody drug conjugate, GMF-1A3-MMAE, targeting an AREG neo-epitope revealed following ADAM17-mediated cleavage. The antibody does not interact with uncleaved Amphiregulin, providing a novel means of targeting cells with high rates of Amphiregulin shedding. Using fluorescent dye conjugation, we demonstrated that the antibody is internalized by cancer cells in a manner dependent on the presence of cell surface cleaved Amphiregulin. Antibodies conjugated with MMAE were cytotoxic in vitro and induced rapid regression of established breast tumor xenografts in immunocompromised mice. We further demonstrate that these antibodies recognize the Amphiregulin neo-epitope in formalin fixed paraffin embedded tumor tissue, suggesting their utility as a companion diagnostic for patient selection. Conclusions This ADC targeting Amphiregulin has potential utility in the treatment of breast and other tumors in which proteolytic Amphiregulin shedding is a frequent event.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cristina Mantovani ◽  
Alessio Gastino ◽  
Marzia Cerrato ◽  
Serena Badellino ◽  
Umberto Ricardi ◽  
...  

Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient’s performance status, extent and location of brain involvement, extracranial disease control and the presence of any “druggable” molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a “state-of-art” treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.


Author(s):  
Hyunho Kim ◽  
Joonho Cho ◽  
Sangseok Lee ◽  
Yunhee Lim ◽  
Byunghoon Yoo

Background: Residual neuromuscular blockade (RNMB) is a frequent event after general anesthesia, which can lead to serious complications, such as upper airway obstruction. Sugammadex is useful in reversing RNMB. However, its use in infants has not yet been approved by the Food and Drug Administration. Therefore, anesthesiologists can be hesitant use it, even in situations where no other choice is available.Case: A two-month-old baby presented to the hospital for umbilical polypectomy. At the end of the surgery, neostigmine was administered. Even after waiting for 30 min and injecting an additional dose of neostigmine, neuromuscular blockade was not adequately reversed. Eventually, sugammadex was administered, and spontaneous breathing returned.Conclusions: If there were no particular causes of delayed return to spontaneous breathing in infants, RNMB should be considered and reversal with sugammadex would be useful.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Patrick Lebok ◽  
Hannah Bönte ◽  
Martina Kluth ◽  
Christina Möller-Koop ◽  
Isabell Witzel ◽  
...  

Abstract Background Deletions involving the long arm of chromosome 6 have been reported to occur in breast cancer, but little is known about the clinical relevance of this alteration. Methods We made use of a pre-existing tissue microarray with 2197 breast cancers and employed a 6q15/centromere 6 dual-labeling probe for fluorescence in situ (FISH) analysis Results Heterozygous 6q15 deletions were found in 202 (18%) of 1099 interpretable cancers, including 19% of 804 cancers of no special type (NST), 3% of 29 lobular cancers, 7% of 41 cribriform cancers, and 28% of 18 cancers with papillary features. Homozygous deletions were not detected. In the largest subset of NST tumors, 6q15 deletions were significantly linked to advanced tumor stage and high grade (p < 0.0001 each). 6q deletions were also associated with estrogen receptor negativity (p = 0.0182), high Ki67 proliferation index (p < 0.0001), amplifications of HER2 (p = 0.0159), CCND1 (p = 0.0069), and cMYC (p = 0.0411), as well as deletions of PTEN (p = 0.0003), 8p21 (p < 0.0001), and 9p21 (p = 0.0179). However, 6q15 deletion was unrelated to patient survival in all cancers, in NST cancers, or in subsets of cancers defined by the presence or absence of lymph-node metastases. Conclusion Our data demonstrate that 6q deletion is a frequent event in breast cancer that is statistically linked to unfavorable tumor phenotype and features of genomic instability. The absence of any prognostic impact argues against a clinical applicability of 6q15 deletion testing in breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document