constant pitch
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 23 (4) ◽  
pp. 65-78
Author(s):  
Sergey Vasiliev ◽  
◽  
Viktor Alekseev ◽  
Alyona Fedorova ◽  
Dmitry Lobanov ◽  
...  

Introduction. The technology of investigation of screw propellers complex surfaces, which include the marine and aircraft propellers of vehicles, mechatronic profilers for the implementation of reverse engineering, is considered. A review of the scientific literature shows that at present the problem of monitoring complex surfaces of products at various stages of its life cycle requires further research, since the use of available devices and methods does not always provide the necessary accuracy, technological effectiveness and sufficient information on measurements. The purpose of the work is to develop a new technology for studying complex surfaces of propellers, which include marine and aircraft propellers of vehicles by means of a mechatronic profilograph to implement reverse engineering. Methods. The paper considers the implementation of the innovative technology for studying complex surfaces of propellers using the developed mechatronic profilograph. This ingenious mechatronic profilograph is designed to measure the profile and study the shape of complex surfaces of various products, as well as to determine the geometric and morphological parameters of these surfaces. On the basis of theoretical studies the main design and technological parameters are found and the hyperbolic dependence of the angular rate of the laser sensor movement on the scanning radius is determined for the developed mechatronic profilograph. For example, if a constant pitch of the trajectory along the Archimedes spiral is 2 mm, the value of the sensor angular rate should gradually decrease from the maximum value of 2 rad/s to the minimum value of 0.574 rad/s, i.e. by 3.484 times. Results and discussion. It is revealed that the use of cylindrical coordinates for processing the obtained data by a profilograph is logical and has a number of advantages. An express analysis of the propeller surfaces with rotary symmetry is carried out and differences in the shapes of the surfaces of the propeller blades by deviation values in the longitudinal and transverse directions for different radii are established. On the basis of the experimental data, a two-factor power model describing deviations with a determination coefficient of 0.967 is obtained, according to its analysis, it is clear that on average the angle of deviation in the perpendicular direction to the radius  - increases from 0 to 0.3, and the angle of deviation along the radius  increases from 0 to 5.4.


2021 ◽  
Vol 28 (4) ◽  
pp. 63-87
Author(s):  
Mohammad Hossein Ghaemi

Abstract To analyse the behaviour of marine diesel engines in unsteady states for different purposes, for example to determine the fuel consumption or emissions level, to adjust the control strategy, to manage the maintenance, etc., a goal-based mathematical model that can be easily implemented for simulation is necessary. Such a model usually requires a wide range of operating data, measured on a test stand. This is a time-consuming process with high costs and the relevant data are not available publicly for a selected engine. The present paper delivers a rapid and relatively simple method for preparing a simulation model of a given marine diesel engine, based only on the widely available data in the project guides indicated for steady state conditions. After establishing the framework of the mathematical model, it describes how the parameters of the model can be adjusted for the simulation model and how the results can be verified as well. Conceptually, this is a trial and error method, but the presented case example makes clear how the parameters can be selected to reduce the number of trials and quickly determine the model parameters. The necessary descriptions are given through a case study, which is the MAN-B&W 8S65ME-C8 marine diesel engine. The engine is assumed to be connected to a constant pitch propeller. The presented mathematical model is a mean-value zero-dimensional type with seven state variables. The other variables of the engine are determined based on the state independent variables and the input value, which is the fuel rate. The paper can be used as a guideline to prepare a convenient mathematical model for simulation, with the minimum publicly available data.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7653
Author(s):  
David Wood

This paper considers the effect of wake expansion on the finite blade functions in blade element/momentum theory for horizontal-axis wind turbines. For any velocity component, the function is the ratio of the streamtube average to that at the blade elements. In most cases, the functions are set by the trailing vorticity only and Prandtl’s tip loss factor can be a reasonable approximation to the axial and circumferential functions at sufficiently high tip speed ratio. Nevertheless, important cases like coned or swept rotors or shrouded turbines involve more complex blade functions than provided by the tip loss factor or its recent modifications. Even in the presence of significant wake expansion, the functions derived from the exact solution for the flow due to constant pitch and radius helical vortices provide accurate estimates for the axial and circumferential blade functions. Modifying the vortex pitch in response to the expansion improves the accuracy of the latter. The modified functions are more accurate than the tip loss factor for the test cases at high tip speed ratio that are studied here. The radial velocity is important for expanding flow as it has the magnitude of the induced axial velocity near the edge of the rotor. It is shown that the resulting angle of the flow to the axial direction is small even with significant expansion, as long is the tip speed ratio is high. This means that blade element theory does not have account for the effective blade sweep due to the radial velocity. Further, the circumferential variation of the radial velocity is lower than of the other components.


2021 ◽  
Vol 6 (6) ◽  
pp. 1413-1425
Author(s):  
David H. Wood ◽  
Eric J. Limacher

Abstract. The flow upwind of an energy-extracting horizontal-axis wind turbine expands as it approaches the rotor, and the expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long been known to influence the axial momentum equation through the axial component of the pressure, although the extent of the influence has not been quantified. Starting with the impulse analysis of Limacher and Wood (2020), but making no further use of impulse techniques, we derive its exact expression when the rotor is a circumferentially uniform disc. This expression, which depends on the radial velocity and the axial induction factor, is added to the thrust equation containing the pressure on the back of the disc. Removing the pressure to obtain a practically useful equation shows the axial induction in the far wake is twice the value at the rotor only at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding flow carries over to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches the Joukowsky model of a hub vortex on the axis of rotation and tip vortices originating from each blade. The additional assumption that the helical tip vortices have constant pitch allows a semi-analytic treatment of their effect on the rotor flow. Expansion modifies the relation between the pitch and induced axial velocity so that the far-wake area and induction are significantly less than twice the values at the rotor. There is a moderate decrease – about 6 % – in the power production, and a similar size error occurs in the familiar axial momentum equation involving the axial velocity.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5133
Author(s):  
Michele Meo ◽  
Francesco Rizzo ◽  
Mark Portus ◽  
Fulvio Pinto

Composite laminated materials have been largely implemented in advanced applications due to the high tailorability of their mechanical performance and low weight. However, due to their low resistance against out-of-plane loading, they are prone to generate damage as a consequence of an impact event, leading to the loss of mechanical properties and eventually to the catastrophic failure of the entire structure. In order to overcome this issue, the high tailorability can be exploited to replicate complex biological structures that are naturally optimised to withstand extreme impact loading. Bioinspired helicoidal laminates have been already studied in-depth with good results; however, they have been manufactured by applying a constant pitch rotation between each consecutive ply. This is in contrast to that observed in biological structures where the pitch rotation is not constant along the thickness, but gradually increases from the outer shell to the inner core in order to optimise energy absorption and stress distribution. Based on this concept, Functionally Graded Pitch (FGP) laminated composites were designed and manufactured in order to improve the impact resistance relative to a benchmark laminate, exploiting the tough nature of helicoidal structures with variable rotation angles. To the authors’ knowledge, this is one of the first attempts to fully reproduce the helicoidal arrangement found in nature using a mathematically scaled form of the triangular sequence to define the lamination layup. Samples were subject to three-point bending and tested under Low Velocity Impact (LVI) conditions at 15 J and 25 J impact energies and ultrasonic testing was used to evaluate the damaged area. Flexural After Impact (FAI) tests were used to evaluate the post-impact residual energy to confirm the superior impact resistance offered by these bioinspired structures. Vast improvements in impact behaviour were observed in the FGP laminates over the benchmark, with an average reduction of 41% of the damaged area and an increase in post-impact residual energy of 111%. The absorbed energy was similarly reduced (−44%), and greater mechanical strength (+21%) and elastic energy capacity (+78%) were demonstrated in the three-point bending test.


2021 ◽  
Author(s):  
Harshkumar Patel ◽  
Hong Zhou

Abstract Springs are mechanical devices that are employed to resist forces, store energy, absorb shocks, mitigate vibrations, or maintain parts contacting each other. Spring wires are commonly coiled in the forms of helixes for either extension or compression. Helical springs usually have cylindrical shapes that have constant coil diameter, constant pitch and constant spring rate. Unlike conventional cylindrical coil springs, the coil diameter of conically coiled springs is variable. They have conical or tapered shapes that have a large coil diameter at the base and a small coil diameter at the top. The variable coil diameter enables conical coil springs generate desired load deflection relationships, have high lateral stability and low buckling liability. In addition, conical compression springs can have significantly larger compression or shorter compressed height than conventional helical compression springs. The compressed height of a conical compression spring can reach its limit that is the diameter of the spring wire if it is properly synthesized. The height of an undeformed conical coil spring can have its height of its spring wire if the spring pitch is chosen to be zero. The variable coil diameter of conical coil springs provides them with unique feature, but also raises their synthesis difficulties. Synthesizing conical coil springs that require large spring compression or small deformed spring height or constant spring rate is challenging. This research is motivated by surmounting the current challenges facing conical coil springs. In this research, independent parameters are introduced to control the diameter and pitch of a conical coil spring. Different conical coil springs are modeled. Their performances are simulated using the created models. The deflection-force relationships of conical coil springs are analyzed. The results from this research provide useful guidelines for developing conical coil springs.


Automation ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 98-115
Author(s):  
Sebastian Sanchez ◽  
Pranav A. Bhounsule

A rimless wheel or a wheel without a rim, is the simplest example of a legged robot and is an ideal testbed to understand the mechanics of locomotion. This paper presents the design, modeling, and control of a differential drive rimless wheel robot that achieves straight-line movement and turning. The robot design comprises a central axis with two 10-spoked springy rimless wheels on either side and a central body that houses the electronics, motors, transmission, computers, and batteries. To move straight, both motors are commanded to constant pitch control of the central body. To turn while maintaining constant pitch, a differential current is added and subtracted from currents on either motor. In separate tests, the robot achieved the maximum speed of 4.3 m per sec (9.66 miles per hour), the lowest total cost of transport (power per unit weight per unit velocity) of 0.13, and a smallest turning radius of 0.5 m. A kinematics-based model for steering and a dynamics-based sagittal (fore-aft) plane model for forward movement is presented. Finally, parameters studies that influence the speed, torque, power, and energetics of locomotion are performed. A rimless wheel that can move straight and turn can potentially be used to navigate in constrained spaces such as homes and offices.


2021 ◽  
Author(s):  
David Wood ◽  
Eric Limacher

Abstract. Upwind of an energy-extracting horizontal-axis wind turbine, the flow expands as it approaches the rotor, and the expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long been known to influence the axial momentum equation through the axial component of the pressure, although the extent of the influence has not been quantified. Starting with the impulse analysis of Limacher & Wood (2020), but making no further use of impulse techniques, we demonstrate that the expansion redistributes momentum from the external flow to the wake and derive its exact expression when the rotor is circumferentially uniform. This expression, which depends on the radial velocity and the axial induction factor, is added to the thrust equation containing the pressure on the back of the disk. Removing the pressure to obtain a practically useful equation shows the axial induction in the far-wake is twice the value at the rotor only at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding flow carries over to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches the "Joukowsky'' model of a hub vortex on the axis of rotation and tip vortices originating from each blade. The additional assumption that the helical tip vortices have constant pitch, allows a semi-analytic treatment of their effect on the rotor flow. Expansion modifies the relation between the pitch and induced axial velocity so that the far-wake area and induction are significantly less than twice the values at the rotor. There is a moderate decrease – about 6 % – in the power production and a similar size error occurs in the familiar axial momentum equation involving the axial velocity.


Sign in / Sign up

Export Citation Format

Share Document