plant p uptake
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Wuxia Bi ◽  
Baisha Weng ◽  
Denghua Yan ◽  
Hao Wang ◽  
Mengke Wang ◽  
...  

Soil microbial communities are essential to phosphorus (P) cycling, especially in the process of insoluble phosphorus solubilization for plant P uptake. Phosphate-solubilizing microorganisms (PSM) are the dominant driving forces. The PSM mediated soil P cycling is easily affected by water condition changes due to extreme hydrological events. Previous studies basically focused on the effects of droughts, floods, or drying-rewetting on P cycling, while few focused on drought-flood abrupt alternation (DFAA), especially through microbial activities. This study explored the DFAA effects on P cycling mediated by PSM and P metabolism-related genes in summer maize field soil. Field control experiments were conducted to simulate two levels of DFAA (light drought-moderate flood, moderate drought-moderate flood) during two summer maize growing periods (seeding-jointing stage, tasseling-grain filling stage). Results showed that the relative abundance of phosphate-solubilizing bacteria (PSB) and phosphate-solubilizing fungi (PSF) increased after DFAA compared to the control system (CS), and PSF has lower resistance but higher resilience to DFAA than PSB. Significant differences can be found on the genera Pseudomonas, Arthrobacter, and Penicillium, and the P metabolism-related gene K21195 under DFAA. The DFAA also led to unstable and dispersed structure of the farmland ecosystem network related to P cycling, with persistent influences until the mature stage of summer maize. This study provides references for understanding the micro process on P cycling under DFAA in topsoil, which could further guide the DFAA regulations.


2021 ◽  
Vol 1 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Patrick Gerard ◽  
Nishanth Tharayil

Phosphorus (P) is the second most important mineral nutrient for plant growth and plays a vital role in maintaining global food security. The natural phosphorus reserves [phosphate rock (PR)] are declining at an unprecedented rate, which will threaten the sustainable food supply in near future. Rendered animal byproducts such as meat and bone meal (MBM), could serve as a sustainable alternative to meet crop phosphorus demand. Even though nitrogen (N) from MBM is readily mineralized within a few days, >75% of the P in MBM is present as calcium phosphate that is sparingly available to plants. Thus, application of MBM with the aim of meeting crop N demand could result in buildup of P reserves in soil, which necessitates the need to improve the P mobilization from MBM to achieve higher plant P use efficiency. Here, we tested the potential of two microbial inoculum-arbuscular mycorrhizal fungi (AMF) and P solubilizing fungi (Penicillium bilaiae), in improving the mobilization of P from MBM and the subsequent P uptake by maize (Zea mays). Compared to the non-inoculated MBM control, the application of P. bilaiae increased the P mobilization from MBM by more than two-fold and decreased the content of calcium bound P in the soil by 26%. However, despite this mobilization, P. bilaiae did not increase the tissue content of P in maize. On the other hand, AMF inoculation with MBM increased the plant root, shoot biomass, and plant P uptake as compared to non-inoculated control, but did not decrease the calcium bound P fraction of the soil, indicating there was limited P mobilization. The simultaneous application of both AMF and P. bilaiae in association with MBM resulted in the highest tissue P uptake of maize with a concomitant decrease in the calcium bound P in the soil, indicating the complementary functional traits of AMF and P. bilaiae in plant P nutrition from MBM. Arbuscular mycorrhizal fungi inoculation with MBM also increased the plant photosynthesis rate (27%) and root phosphomonoesterase activity (40%), which signifies the AMF associated regulation of plant physiology. Collectively, our results demonstrate that P mobilization and uptake efficiency from MBM could be improved with the combined use of arbuscular mycorrhizal fungi and P. bilaiae.


Author(s):  
Andrea Balla Kovács ◽  
Rita Kremper ◽  
János Kátai ◽  
Imre Vágó ◽  
Dóra Buzetzky ◽  
...  

Soil incubation and pot experiments were conducted to follow the sorption processes of added phosphorus (P) fertiliser using the radioisotope tracer technique. Increasing doses of P fertiliser (40, 80, 160, 320 mg P/kg soil) were added to Chernozem and Arenosol and incubated for 1, 3, and 13 weeks. After incubation, perennial ryegrass (Lolium perenne L.) was sown in one group of pots, and the experiment had been continuing for another 9 weeks. The yield, grass P uptake, isotopically exchangeable (P<sub>IE</sub>), water-soluble (P<sub>W</sub>), and ammonium lactate soluble phosphorus (P<sub>AL</sub>) fractions of soils were measured. On Chernozem, plant P uptake, P<sub>IE</sub>, P<sub>W</sub> and P<sub>AL</sub> were significantly less in the case of the longest incubation period compared to shorter incubations. This suggests a transformation of P into tightly sorbed form. On Arenosol, there were only small changes in the parameters as the incubation period increased, suggesting less intense P transformation to tightly sorbed form. The P<sub>W</sub>/P<sub>IE</sub> ratio enhanced with increasing P-doses, and the ratios were higher on Arenosol. On Arenosol, the higher P doses caused a greater increase of P<sub>W</sub> than on Chernozem. The P<sub>IE</sub> + P<sub>W</sub> showed a good correlation with plant P uptake proving this value can be a good indicator of plant-available phosphorus.  


Author(s):  
Fitsum Tesfaye ◽  
Xiaoyu Liu ◽  
Jufeng Zheng ◽  
Kun Cheng ◽  
Rongjun Bian ◽  
...  

AbstractAs one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha−1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Rosolino Ingraffia ◽  
Sergio Saia ◽  
Antonio Giovino ◽  
Gaetano Amato ◽  
Giuseppe Badagliacca ◽  
...  

AbstractMany aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.


2021 ◽  
Vol 14 (2) ◽  
pp. 735-761
Author(s):  
Hongxing He ◽  
Per-Erik Jansson ◽  
Annemieke I. Gärdenäs

Abstract. This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, referred to as Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled carbon (C), nitrogen (N), and P dynamics for terrestrial ecosystems. The model was evaluated against observed forest growth and measured leaf C∕P, C∕N, and N∕P ratios in four managed forest regions in Sweden. The four regions form a climatic and fertility gradient from 64∘ N (northern Sweden) to 56∘ N (southern Sweden), with mean annual temperature varying from 0.7–7.1 ∘C and soil C∕N and C∕P ratios varying between 19.8–31.5 and 425–633, respectively. The growth of the southern forests was found to be P-limited, with harvested biomass representing the largest P losses over the studied rotation period. The simulated P budgets revealed that southern forests are losing P, while northern forests have balanced P budgets. Symbiotic fungi accounted for half of total plant P uptake across all four regions, which highlights the importance of fungal-tree interactions in Swedish forests. The results of a sensitivity analysis demonstrated that optimal forest growth occurs at a soil N∕P ratio between 15–20. A soil N∕P ratio above 15–20 will result in decreased soil C sequestration and P leaching, along with a significant increase in N leaching. The simulations showed that Coup-CNP could describe shifting from being mostly N-limited to mostly P-limited and vice versa. The potential P-limitation of terrestrial ecosystems highlights the need for biogeochemical ecosystem models to consider the P cycle. We conclude that the inclusion of the P cycle enabled the Coup-CNP to account for various feedback mechanisms that have a significant impact on ecosystem C sequestration and N leaching under climate change and/or elevated N deposition.


2021 ◽  
Vol 232 ◽  
pp. 03012
Author(s):  
B.N. Fitriatin ◽  
V.F. Dewi ◽  
A. Yuniarti

Dry land in Indonesia is dominated by marginal soil which have low macro nutrient content, low organic matter content and low soil microbial activity. Improving soil quality it is necessary to increase nutrients availability such as biofertilizers application. Biofertilizers contains beneficial microbial inoculants to increase soil nutrient availability. The use of biofertilizers combined with NPK fertilizer will increase macro nutrients availability and optimize plant growth, thus will increase fertilizers efficiency. This experiment was carried out to study the impact of biofertilizers on available-P, plant P-uptake and yield of upland rice at Land Research of Agriculture Faculty, Universitas Padjadjaran. This experiment used a randomized block design consisting of ten treatments and three replications The treatments consisted with two doses of biofertilizers (50 kg ha-1 and 75 kg ha-1) and three doses of N,P,K fertilizers (100%, 75%, and 50% from recommended doses). Biofertilizers contains N-fixing bacteria and phosphate solubilizing microbes. The result of experiment showed that application of biofertilizers 75 kg ha-1 and biofertilizers 50 kg ha-1 + N, P, K 50% increased soil phosphorus availability. The application of biofertilizers increased P-uptake up to 81%. Futhermore, biofertilizers 75 kg ha-1 + N, P, K 75% increased the yield of upland rice by 164%.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1941
Author(s):  
Iria Regueiro ◽  
Peter Siebert ◽  
Jingna Liu ◽  
Dorette Müller-Stöver ◽  
Lars Stoumann Jensen

There is an urgent need for better management practices regarding livestock farm nutrient imbalances and for finding alternatives to the actual use of mineral fertilizers. Acidification of animal manure is a mitigation practice used to reduce ammonia emissions to the atmospheric environment during manure storage and land application. Acidification modifies manure physicochemical characteristics, among which soluble N and P significantly increase. The main objective of this study was to investigate if acidification and the addition of a nitrification inhibitor to manure and placement of the treated manure close to the seed can stimulate maize growth by enhancing nutrient availability, specially P and consequently plant P uptake, at early development stages without the use of mineral N and P as a starter fertilizer. Raw dairy slurry and solid fractions from dairy slurry and digestate from a biogas plant were acidified to pH 5.5 and applied with or without a nitrification inhibitor (DMPP, 3,4-dimethyl pyrazole phosphate) to maize in a pot experiment, where biomass productivity, nutrient uptake and soil P availability were examined. Acidification increased the water-extractable P fraction of all slurry and digestate organic residues (by 20–61% of total P) and consequently plant P uptake from solid fractions of both slurry and digestate compared to the untreated products (by 47–49%). However, higher plant biomass from acidification alone was only achieved for the slurry solid fraction, while the combination of acidification and DMPP also increased plant biomass in the digestate solids treatment (by 49%). We therefore conclude that the combination of acidification and a nitrification inhibitor can increase the starter fertilizer value of slurry and digestate products sufficiently to make them suitable as a maize starter fertilizer.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 564
Author(s):  
Ahmed Jasim ◽  
Ahmed Zaeen ◽  
Lakesh K. Sharma ◽  
Sukhwinder K. Bali ◽  
Chunzeng Wang ◽  
...  

Applications of remote sensing are important in improving potato production through the broader adoption of precision agriculture. This technology could be useful in decreasing the potential contamination of soil and water due to the over-fertilization of agriculture crops. The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific, Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato yield and phosphorus (P) uptake. The experimental design was a randomized complete block with four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as triple superphosphate (46% P2O5). Vegetation indices (VIs) and plant pigment levels were calculated at various time points during the potato growth cycle, correlated with total potato yields and P uptake by the stepwise fitting of multiple linear regression models. Data generated by Crop Circle™ and GreenSeeker™ had a low predictive value of potato yields, especially early in the season. Crop Circle™ performed better than GreenSeeker™ in predicting plant P uptake. In contrast, the passive sensor data provided good estimates of total yields early in the season but had a poor correlation with P uptake. The combined use of active and passive sensors presents an opportunity for better P management in potatoes.


Sign in / Sign up

Export Citation Format

Share Document