alpine treeline
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 40)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Vol 503 ◽  
pp. 119761
Author(s):  
Xiangyan Feng ◽  
Pengfei Lin ◽  
Wenzhi Zhao

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1605
Author(s):  
Lili Zheng ◽  
Peili Shi ◽  
Tiancai Zhou ◽  
Ge Hou ◽  
Minghua Song ◽  
...  

Alpine treelines are projected to shift upslope in response to climate warming, but empirical studies have yielded inconsistent results, with both upshifted and stable alpine treelines. Additionally, treelines on different slope aspects of the same mountain can differ. Thus, for a better understanding of the mechanisms of treeline formation and treeline responses to climate change, we need to elucidate the population dynamics at treelines on different slope aspects. Here, we quantified the population dynamics of Balfour spruce (Picea likiangensis var. rubescens) at treeline ecotones on contrasting north- and east-facing slopes on the eastern Tibetan Plateau based on field surveys. The alpine treeline positions of Balfour spruce have not advanced toward higher altitudes on the contrasting slopes in recent decades. Compared with the east-facing slope, more recruits occurred on the north-facing slope above the present treeline, indicating a more favorable regeneration condition. However, on the north-facing slope, the individual growth rate of Balfour spruce was lower, and the number of adult trees above the present treeline was higher than that on the east-facing slope. Thus, slope aspects mediate a trade-off between the growth and survival of treeline species, explaining the absence of an impact of slope aspects on treeline responses to climate change. Our results highlight the importance of considering the effect of topography on population dynamics in predicting alpine treeline dynamics under the scenario of climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriano Losso ◽  
Andreas Bär ◽  
Lucrezia Unterholzner ◽  
Michael Bahn ◽  
Stefan Mayr

AbstractDuring winter, conifers at the alpine treeline suffer dramatic losses of hydraulic conductivity, which are successfully recovered during late winter. Previous studies indicated branch water uptake to support hydraulic recovery. We analyzed water absorption and redistribution in Picea abies and Larix decidua growing at the treeline by in situ exposure of branches to δ2H-labelled water. Both species suffered high winter embolism rates (> 40–60% loss of conductivity) and recovered in late winter (< 20%). Isotopic analysis showed water to be absorbed over branches and redistributed within the crown during late winter. Labelled water was redistributed over 425 ± 5 cm within the axes system and shifted to the trunk, lower and higher branches (tree height 330 ± 40 cm). This demonstrated relevant branch water uptake and re-distribution in treeline conifers. The extent of water absorption and re-distribution was species-specific, with L. decidua showing higher rates. In natura, melting snow might be the prime source for absorbed and redistributed water, enabling embolism repair and restoration of water reservoirs prior to the vegetation period. Pronounced water uptake in the deciduous L. decidua indicated bark to participate in the process of water absorption.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1417
Author(s):  
Yafeng Wang ◽  
Qing Mao ◽  
Ping Ren ◽  
Shalik Ram Sigdel

The long-term stability of alpine treeline positions and increased stem density are frequently reported by recent studies; however, whether a denser treeline forest is relevant to competitive tree–tree interactions remain unclear. Herein, we mapped and surveyed individual trees in two undisturbed Smith fir (Abies georgei var. smithii) treeline plots (with a size: 30 m × 200 m; plot NE1: 4477 m, NE2: 4451 m) near Ranwu Lake (RW) on the southeastern Tibetan Plateau. The surface pattern method and spatial point pattern analysis were used to detect the spatial distribution patterns of three size classes (seedlings, juveniles, adults) and spatial associations between the pairwise size classes. We also compared our results to the spatial patterns of the five other treeline forests (Deqin, Linzhi, Changdu, Yushu, Aba) reported from the Tibetan Plateau. Young trees dominated the two fir treeline plots. Both positive and negative spatial autocorrelations for all of the trees were detected in two study plots. Intraspecific facilitation and competition coexisted at the fir treelines in three forest regions (RW, Linzhi, Aba) characterized by a mild moist climate, whereas intraspecific facilitation dominated the other three forest regions (Changdu, Deqin, Yushu), which featured seasonal climatic stress or high disturbance pressure. Thus, increased stem density at alpine treeline can be linked to competitive interactions in relatively favorable environmental conditions. Overall, the spatial patterns of the treeline population are mainly shaped by the combination of thermal and moisture conditions and are also modulated by non-climatic variables (e.g., disturbance history and microtopography).


Author(s):  
Yu Zhou ◽  
Lifeng Wang ◽  
Yamei Chen ◽  
Jian Zhang ◽  
Zhenfeng Xu ◽  
...  

2021 ◽  
Vol 17 (8) ◽  
pp. 20210069
Author(s):  
Brodie J. Foster ◽  
Graham A. McCulloch ◽  
Marianne F. S. Vogel ◽  
Travis Ingram ◽  
Jonathan M. Waters

Anthropogenic environmental change can underpin major shifts in natural selective regimes, and can thus alter the evolutionary trajectories of wild populations. However, little is known about the evolutionary impacts of deforestation—one of the most pervasive human-driven changes to terrestrial ecosystems globally. Absence of forest cover (i.e. exposure) has been suggested to play a role in selecting for insect flightlessness in montane ecosystems. Here, we capitalize on human-driven variation in alpine treeline elevation in New Zealand to test whether anthropogenic deforestation has caused shifts in the distributions of flight-capable and flightless phenotypes in a wing-polymorphic lineage of stoneflies from the Zelandoperla fenestrata species complex. Transect sampling revealed sharp transitions from flight-capable to flightless populations with increasing elevation. However, these phenotypic transitions were consistently delineated by the elevation of local treelines, rather than by absolute elevation, providing a novel example of human-driven evolution in response to recent deforestation. The inferred rapid shifts to flightlessness in newly deforested regions have implications for the evolution and conservation of invertebrate biodiversity.


2021 ◽  
Vol 304-305 ◽  
pp. 108403
Author(s):  
Haibo Du ◽  
Mai-He Li ◽  
Christian Rixen ◽  
Shengwei Zong ◽  
Michael Stambaugh ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110259
Author(s):  
Anna Masseroli ◽  
Giovanni Leonelli ◽  
Umberto Morra di Cella ◽  
Eric P Verrecchia ◽  
David Sebag ◽  
...  

Both biotic and abiotic components, characterizing the mountain treeline ecotone, respond differently to climate variations. This study aims at reconstructing climate-driven changes by analyzing soil evolution in the late Holocene and by assessing the climatic trends for the last centuries and years in a key high-altitude climatic treeline (2515 m a.s.l.) on the SW slope of the Becca di Viou mountain (Aosta Valley Region, Italy). This approach is based on soil science and dendrochronological techniques, together with daily air/soil temperature monitoring of four recent growing seasons. Direct measurements show that the ongoing soil temperatures during the growing season, at the treeline and above, are higher than the predicted reference values for the Alpine treeline. Thus, they do not represent a limiting factor for tree establishment and growth, including at the highest altitudes of the potential treeline (2625 m a.s.l.). Dendrochronological evidences show a marked sensitivity of tree-ring growth to early-summer temperatures. During the recent 10-year period 2006–2015, trees at around 2300 m a.s.l. have grown at a rate that is approximately 1.9 times higher than during the 10-year period 1810–1819, one of the coolest periods of the Little Ice Age. On the other hand, soils show only an incipient response to the ongoing climate warming, likely because of its resilience regarding the changeable environmental conditions and the different factors influencing the soil development. The rising air temperature, and the consequent treeline upward shift, could be the cause of a shift from Regosol to soil with more marked Umbric characteristics, but only for soil profiles located on the N facing slopes. Overall, the results of this integrated approach permitted a quantification of the different responses in abiotic and biotic components through time, emphasizing the influence of local station conditions in responding to the past and ongoing climate change.


Sign in / Sign up

Export Citation Format

Share Document