vegetation activity
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 62)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Wenqi Zhang ◽  
Huaan Jin ◽  
Ainong Li ◽  
Huaiyong Shao ◽  
Xinyao Xie ◽  
...  

Vegetation biophysical products offer unique opportunities to examine long-term vegetation dynamics and land surface phenology (LSP). It is important to understand the time-series performances of various global biophysical products for global change research. However, few endeavors have been dedicated to assessing the performances of long-term change characteristics or LSP extraction derived from different satellite products, especially in mountainous areas with highly fragmented and rugged surfaces. In this paper, we assessed the time-series characteristics and LSP detections of Global LAnd Surface Satellite (GLASS) leaf area index (LAI), fractional vegetation cover (FVC), and gross primary production (GPP) products across the Three-River Source Region (TRSR). The performances of products’ temporal agreements and their statistical relationship as a function of topographic indices and heterogeneous pixels, respectively, were investigated through intercomparison among three products during the period 2000 to 2018. The results show that the phenological differences between FVC and two other products are beyond 10 days over more than 35% of the pixels in TRSR. The long-term trend of FVC diverges significantly from GPP and LAI for 13.96% of the total pixels, and the percentages of mismatched pixels between FVC and two other products are 33.24% in the correlation comparison. Moreover, good agreements are observed between GPP and LAI, both in terms of LSP and interannual variations. Finally, the LSP and long-term dynamics of the three products exhibit poor performances on heterogeneous surfaces and complex topographic areas, which reflects the potential impacts of environmental factors and algorithmic imperfections on the quality and performances of different products. Our study highlights the spatiotemporal disparities in detections of surface vegetation activity in mountainous areas by using different biophysical products. Future global change studies may require multiple high-quality satellite products with long-term stability as data support.


2021 ◽  
Vol 21 (23) ◽  
pp. 17833-17853
Author(s):  
Keunmin Lee ◽  
Je-Woo Hong ◽  
Jeongwon Kim ◽  
Sungsoo Jo ◽  
Jinkyu Hong

Abstract. Cities represent a key space for a sustainable society in a changing environment, and our society is steadily embracing urban green space for its role in mitigating heat waves and anthropogenic CO2 emissions. This study reports 2 years of surface fluxes of energy and CO2 in an artificially constructed urban forest measured by the eddy covariance method to examine the impact of urban forests on air temperature and net CO2 exchange. The urban forest site shows typical seasonal patterns of forest canopies with the seasonal march of the East Asian summer monsoon. This study shows that the urban forest reduces both the warming trend and urban heat island intensity compared to the adjacent high-rise urban areas and that photosynthetic carbon uptake is large despite relatively small tree density and leaf area index. During the significant drought period in the second year, gross primary production and evapotranspiration decreased, but their reduction was not as significant as those in natural forest canopies. We speculate that forest management practices, such as artificial irrigation and fertilization, enhance vegetation activity. Further analysis reveals that ecosystem respiration in urban forests is more pronounced than for typical natural forests in a similar climate zone. This can be attributed to the substantial amount of soil organic carbon due to intensive historical soil use and soil transplantation during forest construction, as well as relatively warmer temperatures in urban heat domes. Our findings suggest the need for caution in soil management when aiming to reduce CO2 emissions in urban areas.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1390
Author(s):  
Zhaosheng Wang

Remote sensing vegetation index data contain important information about the effects of ozone pollution, climate change and other factors on vegetation growth. However, the absence of long-term observational data on surface ozone pollution and neglected air pollution-induced effects on vegetation growth have made it difficult to conduct in-depth studies on the long-term, large-scale ozone pollution effects on vegetation health. In this study, a multiple linear regression model was developed, based on normalized difference vegetation index (NDVI) data, ozone mass mixing ratio (OMR) data at 1000 hPa, and temperature (T), precipitation (P) and surface net radiation (SSR) data during 1982–2020 to quantitatively assess the impact of ozone pollution and climate change on vegetation growth in China on growing season. The OMR data showed an increasing trend in 99.9% of regions in China over the last 39 years, and both NDVI values showed increasing trends on a spatial basis with different ozone pollution levels. Additionally, the significant correlations between NDVI and OMR, temperature and SSR indicate that vegetation activity is closely related to ozone pollution and climate change. Ozone pollution affected 12.5% of NDVI, and climate change affected 26.7% of NDVI. Furthermore, the effects from ozone pollution and climate change on forest, shrub, grass and crop vegetation were evaluated. Notably, the impact of ozone pollution on vegetation growth was 0.47 times that of climate change, indicating that the impact of ozone pollution on vegetation growth cannot be ignored. This study not only deepens the understanding of the effects of ozone pollution and climate change on vegetation growth but also provides a research framework for the large-scale monitoring of air pollution on vegetation health using remote sensing vegetation data.


2021 ◽  
Vol 12 (4) ◽  
pp. 1015-1035
Author(s):  
Ana Bastos ◽  
René Orth ◽  
Markus Reichstein ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
...  

Abstract. In 2018 and 2019, central Europe was affected by two consecutive extreme dry and hot summers (DH18 and DH19). The DH18 event had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example through depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further increase vegetation susceptibility to additional hazards. Temporally compound extremes such as DH18 and DH19 can, therefore, result in an amplification of impacts due to preconditioning effects of past disturbance legacies. Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the vegetation responses to the first compound event (DH18) modulated the impacts of the second (DH19). To quantify changes in vegetation vulnerability to each compound event, we first train a set of statistical models for the period 2001–2017, which are then used to predict the impacts of DH18 and DH19 on enhanced vegetation index (EVI) anomalies from MODIS. These estimates correspond to expected EVI anomalies in DH18 and DH19 based on past sensitivity to climate. Large departures from the predicted values can indicate changes in vulnerability to dry and hot conditions and be used to identify modulating effects by vegetation activity and composition or other environmental factors on observed impacts. We find two regions in which the impacts of the two compound dry and hot (DH) events were significantly stronger than those expected based on previous climate–vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked to changing background CO2 and temperature conditions. A second region, dominated by forests and grasslands, showed browning from DH18 to DH19, even though dry and hot conditions were partly alleviated in 2019. This browning trajectory was mainly explained by the preconditioning role of DH18 on the impacts of DH19 due to interannual legacy effects and possibly by increased susceptibility to biotic disturbances, which are also promoted by warm conditions. Dry and hot summers are expected to become more frequent in the coming decades, posing a major threat to the stability of European forests. We show that state-of-the-art process-based models could not represent the decline in response to DH19 because they missed the interannual legacy effects from DH18 impacts. These gaps may result in an overestimation of the resilience and stability of temperate ecosystems in future model projections.


2021 ◽  
Vol 13 (19) ◽  
pp. 4010
Author(s):  
Tiago Ermitão ◽  
Célia M. Gouveia ◽  
Ana Bastos ◽  
Ana C. Russo

Persistent hot and dry conditions play an important role in vegetation dynamics, being generally associated with reduced activity. In the Mediterranean region, ecosystems are adapted to such conditions. However, prolonged and intense heat and drought or the occurrence of compound hot and dry events may still have a negative impact on vegetation activity. This work aims to study how the productivity of Mediterranean vegetation is affected by hot and dry events, examining a set of severe episodes that occurred in three different regions (Iberian Peninsula, Eastern Mediterranean and Western Europe) between 2001 and 2019. The analysis relies on remote sensing products, namely Gross Primary Production from MODIS to detect and monitor vegetative stress and LST from MODIS and SM from ESA CCI to evaluate the influence of temperature and soil water availability on stressed vegetation. Of all events, the 2005 episode in the Iberian Peninsula was the most significant, affecting large sectors of low tree cover areas and crops and leading to reductions of annual plant productivity in affected vegetation of ~47 TgC/year. The obtained results highlight the influence of land-atmosphere coupling on vegetation productivity and clarified the role of warm springs on vegetation activity and soil moisture that may amplify summer temperatures. The functional recovery of affected vegetation productivity after these episodes varied across events, ranging from months to years. This work highlights the influence of hot and dry events on vegetation productivity in the Mediterranean basin and the usefulness of remote-sensing products to assess the response of different land covers to such episodes.


2021 ◽  
Author(s):  
Benjamin D. Stocker ◽  
Shersingh Joseph Tumber-Dávila ◽  
Alexandra G. Konings ◽  
Martha B. Anderson ◽  
Christopher Hain ◽  
...  

AbstractThe rooting zone water storage capacity (S0) extends from the soil surface to the weathered bedrock (the Critical Zone) and determines land-atmosphere exchange during dry periods. Despite its importance to land-surface modeling, variations of S0 across space are largely unknown as they cannot be observed directly. We developed a method to diagnose global variations of S0 from the relationship between vegetation activity (measured by sun-induced fluorescence and by the evaporative fraction) and the cumulative water deficit (CWD). We then show that spatial variations in S0 can be predicted from the assumption that plants are adapted to sustain CWD extremes occurring with a return period that is related to the life form of dominant plants and the large-scale topographical setting. Predicted biome-level S0 distributions, translated to an apparent rooting depth (zr) by accounting for soil texture, are consistent with observations from a comprehensive zr dataset. Large spatial variations in S0 across the globe reflect adaptation of zr to the hydroclimate and topography and implies large heterogeneity in the sensitivity of vegetation activity to drought. The magnitude of S0 inferred for most of the Earth’s vegetated regions and particularly for those with a large seasonality in their hydroclimate indicates an important role for plant access to water stored at depth - beyond the soil layers commonly considered in land-surface models.


Author(s):  
Benjamin I Cook ◽  
Kimberly Slinski ◽  
Christa Peters-Lidard ◽  
Amy McNally ◽  
Kristi Arsenault ◽  
...  

AbstractTerrestrial water storage (TWS) provides important information on terrestrial hydroclimate and may have value for seasonal forecasting because of its strong persistence. We use the NASA Hydrological Forecast and Analysis System (NHyFAS) to investigate TWS forecast skill over Africa and assess its value for predicting vegetation activity from satellite estimates of leaf area index (LAI). Forecast skill is high over East and Southern Africa, extending up to 3–6 months in some cases, with more modest skill over West Africa. Highest skill generally occurs during the dry season or beginning of the wet season when TWS anomalies from the previous wet season are most likely to carry forward in time. In East Africa, this occurs prior to and during the transition into the spring “Long Rains” from January–March, while in Southern Africa this period of highest skill starts at the beginning of the dry season in April and extends through to the start of the wet season in October. TWS is highly and positively correlated with LAI, and a logistic regression model shows high cross-validation skill in predicting above or below normal LAI using TWS. Combining the LAI regression model with the NHyFAS forecasts, 1-month lead LAI predictions have high accuracy over East and Southern Africa, with reduced but significant skill at 3-month leads over smaller sub-regions. This highlights the potential value of TWS as an additional source of information for seasonal forecasts over Africa, with direct applications to some of the most vulnerable agricultural regions on the continent.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2021 ◽  
Vol 15 (1) ◽  
pp. 85-90
Author(s):  
Róbert Vass ◽  
Zoltán Túri

Floods slowing down due to the significant decrease of the gradient have considerable sediment accumulation capacity in the floodplain. The grade of accumulation is further increased if the width of the floodplain is not uniform as water flowing out of the narrow sections diverge and its speed is decreased. Surface roughness in a study area of 492 hectares in the Upper Tisza region was analysed based on CIR (color-infrared) orthophotos from 2007. An NDVI index layer was created first on which object-based image segmentation and threshold-based image classification were performed. The study area is dominated by land cover / land use types (grassland-shrubs, forest) with high roughness values. It was concluded that vegetation activity based analyses on their own are not enough for determining floodplain roughness.


Sign in / Sign up

Export Citation Format

Share Document