cotton species
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 111)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 177 ◽  
pp. 114433
Author(s):  
Waqar Afzal Malik ◽  
Maria Afzal ◽  
Xiugui Chen ◽  
Ruifeng Cui ◽  
Xuke Lu ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaokang Fu ◽  
Yonglin Yang ◽  
Meng Kang ◽  
Hengling Wei ◽  
Boying Lian ◽  
...  

The caleosin (CLO) protein family displays calcium-binding properties and plays an important role in the abiotic stress response. Here, a total of 107 CLO genes were identified in 15 plant species, while no CLO genes were detected in two green algal species. Evolutionary analysis revealed that the CLO gene family may have evolved mainly in terrestrial plants and that biological functional differentiation between species and functional expansion within species have occurred. Of these, 56 CLO genes were identified in four cotton species. Collinearity analysis showed that CLO gene family expansion mainly occurred through segmental duplication and whole-genome duplication in cotton. Sequence alignment and phylogenetic analysis showed that the CLO proteins of the four cotton species were mainly divided into two types: H-caleosins (class I) and L-caleosins (class II). Cis-acting element analysis and quantitative RT–PCR (qRT–PCR) suggested that GhCLOs might be regulated by abscisic acid (ABA) and methyl jasmonate (MeJA). Moreover, transcriptome data and qRT–PCR results revealed that GhCLO genes responded to salt and drought stresses. Under salt stress, gene-silenced plants (TRV: GhCLO06) showed obvious yellowing and wilting, higher malondialdehyde (MDA) content accumulation, and significantly lower activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that GhCLO06 plays a positive regulatory role in cotton salt tolerance. In gene-silenced plants (TRV: GhCLO06), ABA-related genes (GhABF2, GhABI5, and GhNAC4) were significantly upregulated after salt stress, suggesting that the regulation of salt tolerance may be related to the ABA signaling pathway. This research provides an important reference for further understanding and analyzing the molecular regulatory mechanism of CLOs for salt tolerance.


2022 ◽  
Author(s):  
Chaochen Huang ◽  
Pengbo Li ◽  
Junfeng Cao ◽  
Zishou Zheng ◽  
Jinquan Huang ◽  
...  

Abstract Background: The cryptochromes (CRY) comprise a specific blue light receptor for plants and animals, which play crucial roles in physiological processes of plant growth, development, and stress tolerance. Results: In the present work, a systematical analysis of CRY gene family from five allotetraploid cotton species, G. hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii together with seven diploid species. There were 18, 17, 17, 17, and 17 CRYs identified in G. hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii, respectively, whereas five to nine CRY genes were identified in the diploid species. Phylogenetic analysis of the protein-coding sequences revealed that CRY genes from the allotetraploids G. hirsutum and G. barbadense, three diploid cotton species (G. raimondii, G. herbaceum, and G. arboreum), and Arabidopsis thaliana could be classified into seven clades. Synteny analysis suggested that the homoeolog of G. hirsutum Gh_A02G0384 has undergone an evolutionary loss event in the other four allotetraploid cotton species. Cis-element analysis predicated the possible functions of CRY genes in G. hirsutum. Public RNA-seq data were investigated to analyze the expression patterns of G. hirsutum CRY genes in various tissues as well as gene expressions under abiotic stress treatments. Conclusion: These results indicated the possible functions of G. hirsutum CRY genes in differential tissues as well as in response to abiotic stress during the cotton plants life cycle.


2022 ◽  
Author(s):  
Ritika Rajendra Waghmare ◽  
Kulandaivelu Velmourougane ◽  
Desouza Blaise ◽  
Lalita Rameshwar Harinkhede ◽  
Pranali Tarachand Bansod ◽  
...  

Abstract Purpose No attempts were made to analyze the diversity in soil and plant biology of wild cotton species (WCS) and cultivated cotton species (CCS), so far. Our study aimed to understand the differences in soil biological, plant biochemistry, and defense enzyme activities among the ten WCS and four CCS. Methods We studied the differences in soil biology, plant biochemistry, and defense enzyme activities among the ten WCS (Gossypium anomalum, G. aridum, G. australe, G. barbosanum, G. capitis-virides, G. davidsonii, G. raimondii, G. somalense, G. stocksii, G. thurberi) and four CCS (G. arboreum, G. herbaceum, G. hirsutum, and G. barbadense). Results CCS had 11%, 2%, and 10% higher soil respiration rate, microbial biomass carbon, and microbial metabolic quotient, respectively, compared to WCS. While, WCS had 45%, 15%, and 5% higher glomalin, soil polysaccharide, proteins, respectively, compared to CCS. WCS had 45%, 13%, 8%, and 13% higher acid and alkaline phosphatase, β-glucosidase, and soil dehydrogenase activities, respectively, compared to CCS. WCS had higher carbohydrates in the shoot (40%) and root (27%), while, CCS recorded higher proteins in the shoot (13%) and root (13%). WCS had significantly higher polyphenol oxidase (4% and 15%), peroxidase (30% and 31%), and catalase (36% and 31%) activities in shoots and root tissues, respectively, compared with CCS, while, WCS had higher phenol concentrations (4%) than CCS. Conclusion Our study suggests that the difference in soil biological, plant biochemistry, and defense enzyme activities among the WCS and CCS can be attributed to the inherent genetic makeup, which influences consequent plant and soil attributes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Mei ◽  
Bowen Qi ◽  
Zegang Han ◽  
Ting Zhao ◽  
Menglan Guo ◽  
...  

As two cultivated widely allotetraploid cotton species, although Gossypium hirsutum and Gossypium barbadense evolved from the same ancestor, they differ in fiber quality; the molecular mechanism of that difference should be deeply studied. Here, we performed RNA-seq of fiber samples from four G. hirsutum and three G. barbadense cultivars to compare their gene expression patterns on multiple dimensions. We found that 15.90–37.96% of differentially expressed genes showed biased expression toward the A or D subgenome. In particular, interspecific biased expression was exhibited by a total of 330 and 486 gene pairs at 10 days post-anthesis (DPA) and 20 DPA, respectively. Moreover, 6791 genes demonstrated temporal differences in expression, including 346 genes predominantly expressed at 10 DPA in G. hirsutum (TM-1) but postponed to 20 DPA in G. barbadense (Hai7124), and 367 genes predominantly expressed at 20 DPA in TM-1 but postponed to 25 DPA in Hai7124. These postponed genes mainly participated in carbohydrate metabolism, lipid metabolism, plant hormone signal transduction, and starch and sucrose metabolism. In addition, most of the co-expression network and hub genes involved in fiber development showed asymmetric expression between TM-1 and Hai7124, like three hub genes detected at 10 DPA in TM-1 but not until 25 DPA in Hai7124. Our study provides new insights into interspecific expression bias and postponed expression of genes associated with fiber quality, which are mainly tied to asymmetric hub gene network. This work will facilitate further research aimed at understanding the mechanisms underlying cotton fiber improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Peng ◽  
Hongge Li ◽  
Gaofei Sun ◽  
Panhong Dai ◽  
Xiaoli Geng ◽  
...  

Cultivated cottons are the most important economic crop, which produce natural fiber for the textile industry. In recent years, the genetic basis of several essential traits for cultivated cottons has been gradually elucidated by decoding their genomic variations. Although an abundance of resequencing data is available in public, there is still a lack of a comprehensive tool to exhibit the results of genomic variations and genome-wide association study (GWAS). To assist cotton researchers in utilizing these data efficiently and conveniently, we constructed the cotton genomic variation database (CottonGVD; http://120.78.174.209/ or http://db.cngb.org/cottonGVD). This database contains the published genomic information of three cultivated cotton species, the corresponding population variations (SNP and InDel markers), and the visualized results of GWAS for major traits. Various built-in genomic tools help users retrieve, browse, and query the variations conveniently. The database also provides interactive maps (e.g., Manhattan map, scatter plot, heatmap, and linkage disequilibrium block) to exhibit GWAS and expression GWAS results. Cotton researchers could easily focus on phenotype-associated loci visualization, and they are interested in and screen for candidate genes. Moreover, CottonGVD will continue to update by adding more data and functions.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2807
Author(s):  
Andrea B. Maeda ◽  
Leslie W. Wells ◽  
Monica A. Sheehan ◽  
Jane K. Dever

Seed germination is the basis for the proliferation of sexual-reproducing plants, efficient crop production, and a successful crop improvement research program. Cotton (Gossypium spp.), the subject of this review, can be often sensitive to germination conditions. The hardness of the cotton seed coat, storage, extreme temperatures, and dormancy are some of the factors that can influence cotton seed germination. Research programs conducting studies on exotic and wild cotton species are especially affected by those hurdles. Here, we briefly review the challenges of cotton seed germination and some of the approaches our cotton breeding program explored throughout the years.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fakhriddin N. Kushanov ◽  
Ozod S. Turaev ◽  
Dilrabo K. Ernazarova ◽  
Bunyod M. Gapparov ◽  
Barno B. Oripova ◽  
...  

Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Xinzhe Cao ◽  
Haijun Zhang ◽  
Chunying Liu ◽  
Yuxi Zhang ◽  
...  

Abstract Background Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. Results An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. Conclusion We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengyun Chen ◽  
Hongliang Jian ◽  
Fei Wei ◽  
Lijiao Gu ◽  
Tingli Hu ◽  
...  

The membrane attack complex/perforin (MACPF) domain-containing proteins are involved in the various developmental processes and in responding to diverse abiotic stress. The function and regulatory network of the MACPF genes are rarely reported in Gossypium spp. We study the detailed identification and partial functional verification of the members of the MACPF family. Totally, 100 putative MACPF proteins containing complete MACPF domain were identified from the four cotton species. They were classified into three phylogenetic groups and underwent multifold pressure indicating that selection produced new functional differentiation. Cotton MACPF gene family members expanded mainly through the whole-genome duplication (WGD)/segmental followed by the dispersed. Expression and cis-acting elements analysis revealed that MACPFs play a role in resistance to abiotic stresses, and some selected GhMACPFs were able to respond to the PEG and cold stresses. Co-expression analysis showed that GhMACPFs might interact with valine-glutamine (VQ), WRKY, and Apetala 2 (AP2)/ethylene responsive factor (ERF) domain-containing genes under cold stress. In addition, silencing endogenous GhMACPF26 in cotton by the virus-induced gene silencing (VIGS) method indicated that GhMACPF26 negatively regulates cold tolerance. Our data provided a comprehensive phylogenetic evolutionary view of Gossypium MACPFs. The MACPFs may work together with multiple transcriptional factors and play roles in acclimation to abiotic stress, especially cold stress in cotton.


Sign in / Sign up

Export Citation Format

Share Document