cereal breeding
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Chamekh Zoubeir ◽  
Ines Zouari ◽  
Salma Jallouli ◽  
Sawsen Ayadi ◽  
Sebei Abdennour ◽  
...  

Use of low-quality water for supplemental irrigation is expected to become soon a common practice in the Mediterranean area, where durum wheat is the main cultivated cereal. Breeding for salt stress tolerance may contribute to the improvement of wheat resilience to irrigation with brackish water. Various traits can be considered as indicators of salt stress tolerance, which include agronomical and physiological criteria. However, the complexity of salinity tolerance mechanisms, the G × E interaction and the lack of correlation between controlled and open field conditions causes uncertainty in the selection process. The present review highlights the main advantages and limitations of different agronomical and physiological traits used in screening for salt stress tolerance in wheat. Special focus is given to carbon and nitrogen isotope discrimination, that remains a bottleneck in breeding for salt stress tolerance. The use of different statistical tools to analyse data related to salt stress tolerance is also discussed in this review.


2021 ◽  
pp. 303-356
Author(s):  
Harsh Raman ◽  

Septoria tritici blotch (STB), caused by the hemibiotrophic fungus Zymoseptoria tritici, is one of the most important foliar diseases of winter cereal crops. Recent advances are helping to understand the genetic basis and architecture of resistance to STB. To date, at least 22 genes for qualitative resistance and over 200 quantitative trait loci (QTL) for quantitative resistance have been identified in cereals. This knowledge is enabling cereal breeding programs to develop varieties with more durable resistance to STB. This chapter reviews recent research on genetic resistance loci and breeding strategies based on both conventional and biotechnology-based breeding approaches (molecular marker/genomic-assisted breeding, genetic transformation, and gene-editing) to achieve achieving durable resistance to STB infection and minimise grain yield losses.


2021 ◽  
pp. 779-824
Author(s):  
Christina Cowger ◽  

This chapter first describes the challenges of diverse climates, diseases, and market classes that face North American small-grain cereal breeders and producers. It discusses the challenges inherent in the complex systems of cereal breeding on the continent, and the changing resistance priorities brought about by shifting pathogen races and production practices. The remainder of the chapter is devoted (in rough order of priority) to the status and prospects for durable resistance to the main pests currently confronting the continent: Fusarium head blight, rusts, powdery mildew, leaf (and glume) blotches, viruses, Hessian fly, and bacterial leaf streak.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1267
Author(s):  
Daniela Marone ◽  
Maria A. Russo ◽  
Antonia Mores ◽  
Donatella B. M. Ficco ◽  
Giovanni Laidò ◽  
...  

The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1552
Author(s):  
Karen A. Peñailillo ◽  
María Fernanda Aedo ◽  
María Carolina Scorcione ◽  
Mónica L. Mathias ◽  
Claudio Jobet ◽  
...  

Increases in cereals grain yield in the last decades have increased the accumulation of straw on the soil after harvest. Farmers typically open burn the straw to prepare the soil for the next crop, resulting in pollution, emission of greenhouse gases, erosion, loss of soil organic matter, and wildfires. An alternative is feeding straw to ruminants, but straw nutritive value is limited by its high content of lignocellulose and low content of protein. Cereal breeding programs have focused on improving grain yield and quality and agronomic traits, but little attention has been paid to straw nutritive value. We screened straw from 49 genotypes of oats and 24 genotypes of wheat from three cereal breeding trials conducted in Chile for in vitro gas production kinetics. We found moderate effects of the genotype on gas production at 8, 24, and 40 h of incubation, and on the maximum extent and rate of gas production. Gas production was negatively associated with lignin and cellulose contents and not negatively associated with grain yield and resistance to diseases and lodging. Effects observed in vitro need to be confirmed in animal experiments before gas production kinetics can be adopted to identify cereal genotypes with more digestible straw.


Author(s):  
Balwinder Kaur ◽  
Karansher S. Sandhu ◽  
Roop Kamal ◽  
Kawalpreet Kaur ◽  
Jagmohan Singh ◽  
...  

Omics technologies, viz., genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal breeding program because they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in cereal-omics promise—in combination with time efficiency—the cost benefits. In this review, we provide a comprehensive overview of the established cereal-omics methods in five major cereals, viz., rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants, (2) high-density transcriptomics data to study gene expression patterns, (3) global and targeted proteome profiling to study protein structure and interaction, (4) metabolomic profiling to quantify organ level small-density metabolites and their composition, and (5) high-resolution high-throughput image-based phenomics approaches are surveyed in this review.


Author(s):  
R. Schlegel ◽  
J. Eifler ◽  
M. Schmidt ◽  
B. Schmiedchen ◽  
F. Ordon ◽  
...  

AbstractDue to several reasons soil-borne viruses such as the furoviruses, i. e., cereal mosaic virus (SBCMV) and wheat mosaic virus (SBWMV) as well as the bymovirus wheat spindle streak mosaic virus (WSSMV) gained importance in cereal breeding including rye. High yield losses are recorded, today. Since there is no or little resistance to these viruses in modern rye cultivars, an extended screening for resistance was initiated. In addition to earlier screenings, 37 rye genotypes were tested for resistance. Among them, three genotypes were found with persistent resistance to SBCMV. They belong to Secale montanum and S. vavilovii species, i. e., wild types of rye. One accession, PC2243 (S. montanum), was used as a resistance donor for the present genetic study. In F2 generation, it was observed that resistance to SBCMV is independently inherited from WSSMV. The evaluation of the ELISA values pointed to a 3:1 distribution assuming duplicate dominant epistasis. Molecular marker analysis supports this segregation pattern. By composite interval mapping a QTL on chromosome 2R could be detected. It can be assumed that there is a DNA region of about 13 cM on the long arm of chromosome 2R (2RL) harboring SBCMV resistance with the closest markers “C9654_1947” and “isotig11640”. Moreover, genotypes with a yellow seed coat showed practically no infection with SBCMV. Thus, the resistance gene could be linked to the allele an1 determining non expression of anthocyanins. This locus was also mapped earlier on chromosome 2R.


2020 ◽  
Vol 12 (23) ◽  
pp. 3877
Author(s):  
Shlomi Aharon ◽  
Zvi Peleg ◽  
Eli Argaman ◽  
Roi Ben-David ◽  
Ran N. Lati

Cereals grains are the prime component of the human diet worldwide. To promote food security and sustainability, new approaches to non-chemical weed control are needed. Early vigor cultivars with enhanced weed-competitiveness ability are a potential tool, nonetheless, the introduction of such trait in breeding may be a long and labor-intensive process. Here, two image-driven plant phenotyping methods were evaluated to facilitate effective and accurate selection for early vigor in cereals. For that purpose, two triticale genotypes differentiating in vigor and growth rate early in the season were selected as model plants: X-1010 (high) and Triticale1 (low). Two modeling approaches, 2-D and 3-D, were applied on the plants offering an evaluation of various morphological growth parameters for the triticale canopy development, under controlled and field conditions. The morphological advantage of X-1010 was observed only at the initial growth stages, which was reflected by significantly higher growth parameter values compared to the Triticale1 genotype. Both modeling approaches were sensitive enough to detect phenotypic differences in growth as early as 21 days after sowing. All growth parameters indicated a faster early growth of X-1010. However, the 2-D related parameter [projected shoot area (PSA)] is the most available one that can be extracted via end user-friendly imaging equipment. PSA provided adequate indication for the triticale early growth under weed-competition conditions and for the improved weed-competition ability. The adequate phenotyping ability for early growth and competition was robust under controlled and field conditions. PSA can be extracted from close and remote sensing platforms, thus, facilitate high throughput screening. Overall, the results of this study may improve cereal breeding for early vigor and weed-competitiveness.


2020 ◽  
Author(s):  
Tiangen Chang ◽  
Qing-Feng Song ◽  
Honglong Zhao ◽  
Shuoqi Chang ◽  
Changpeng Xin ◽  
...  

Abstract Background: Photosynthesis of reproductive organs in C3 cereals is generally regarded as important to crop yield. Whereas, photosynthetic characteristics of reproductive organs are much less understood as compared to leaf photosynthesis, mainly due to methodological limitations. To date, many indirect methods have been developed to study photosynthesis of reproductive organs and its contribution to grain yield, such as organ shading, application of herbicides and photosynthetic measurement of excised organs or tissues, which might be intrusive and cause biases. Thus, a robust and in situ approach needs to be developed.Results: Here we report the development of a custom-built panicle photosynthesis chamber (P-chamber), which can be connected to standard infrared gas analyzers to study photosynthetic/respiratory rate of a rice panicle. With the P-chamber, we measured panicle photosynthetic characteristics of seven high-yielding elite japonica, japonica-indica hybrid and indica rice cultivars. Results show that, 1) rice panicle is photosynthetically active during grain filling, and there are substantial inter-cultivar variations in panicle photosynthetic and respiratory rates, no matter on a whole panicle basis, on an area basis or on a single spikelet basis; 2) among the seven testing cultivars, whole-panicle gross photosynthetic rates are 17 – 54 nmol s-1 5 days after heading under photon flux density (PFD) of 2000 μmol (photons) m-2 s-1, which represent some 20-38% of that of the corresponding flag leaves; 3) rice panicle photosynthesis has higher apparent CO2 compensation point, light compensation point and apparent CO2 saturation point, as compared to that of a typical leaf; 4) there is a strong and significant positive correlation between gross photosynthetic rate 5 days after heading on a single spikelet basis and grain setting rate at harvest (Pearson correlation coefficient r = 0.93, p-value < 0.0001). Conclusions: Rice panicle gross photosynthesis is significant, has great natural variation, and plays an underappreciated role in grain yield formation. The P-Chamber can be used as a tool to study in situ photosynthetic characteristics of irregular non-foliar plant organs, such as ears, culms, leaf sheaths, fruits and branches, which is a relatively less explored area in current cereal breeding community.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 209
Author(s):  
Ian Godwin ◽  
Karen Massel ◽  
Guoquan Liu

New breeding technologies are revolutionizing plant and animal improvement programs [...]


Sign in / Sign up

Export Citation Format

Share Document