postnatal maturation
Recently Published Documents


TOTAL DOCUMENTS

473
(FIVE YEARS 52)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Thenzing J Hurtado-Silva ◽  
Gabriele Giua ◽  
Olivier Lassalle ◽  
Michelle N Murphy ◽  
Jim Wager-Miller ◽  
...  

In humans and rodents, the protracted development of the prefrontal cortex (PFC) throughout adolescence represents a time for marked vulnerability towards environmental adversities, such as stress or drug exposure. We previously showed that the extracellular matrix protein reelin is an instrumental synaptic modulator that shapes medial PFC (mPFC) circuitry during maturation and is a critical mediator of the vulnerability to environmental stress. Emerging evidence highlight the role of the endocannabinoid system in the postnatal maturation of the PFC and reelin deficiency influences behavioral abnormalities caused by heavy consumption of THC during adolescence. Could the reelin-dependent maturation of prefrontal networks may be vulnerable to cannabinoid exposure during adolescence? To explore this hypothesis, we studied the effects of a single in-vivo exposure to a synthetic cannabinoid on reelin expression and mPFC functions in adolescent male mice. The results show that a single cannabinoid exposure mimics reelin haploinsufficiency by decreasing prefrontal reelin expression in a layer-specific pattern without changing its transcriptional levels. Furthermore, this treatment impeded synaptic plasticity: adolescent cannabinoid lowered long-term potentiation to the magnitude observed in age-matched reelin haploinsufficient males. Quantitative PCR analysis showed that changes in the mRNA levels of NMDARs does not account for the reduction of TBS-LTP. Together, the data show that exposure to cannabinoid during adolescence phenocopies reelin haploinsufficiency and further identifies reelin as a key component of the vulnerability of PFC to environmental insults.


2021 ◽  
Vol 14 ◽  
Author(s):  
Patricia Perez-García ◽  
Ricardo Pardillo-Díaz ◽  
Noelia Geribaldi-Doldán ◽  
Ricardo Gómez-Oliva ◽  
Samuel Domínguez-García ◽  
...  

Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones. Thus, using whole cell patch clamp recordings, we have studied the changes in the electrophysiological properties of layer V pyramidal neurons of the rat primary motor cortex during postnatal development. Among all the parameters studied, only the voltage threshold was established at birth and, although some of the changes occurred mainly during the second postnatal week, other properties such as membrane potential, capacitance, duration of the post-hyperpolarization phase or the maximum firing rate were not defined until the beginning of adulthood. Those modifications lead to a decrease in neuronal excitability and to an increase in the working range in young adult neurons, allowing more sensitive and accurate responses. This maturation process, that involves an increase in neuronal size and changes in ionic conductances, seems to be influenced by the neuronal type and by the task that neurons perform as inferred from the comparison with other pyramidal and motor neuron populations.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Simona Boncompagni

In 2017, Boncompagni, Michelucci et al. demonstrated that during exercise the sarcotubular system of extensor digitorum longus (EDL) fibers undergoes a profound remodeling that leads to the assembly of new junctions between T-tubule extensions at the I band and sarcoplasmic reticulum (SR) stacks. As these junctions contain colocalized STIM1 and Orai1 and enhance store-operated Ca2+ entry (SOCE), they have been named Ca2+ entry units (CEUs). In addition, it has been more recently shown that (1) CEUs disassemble following recovery, with T-tubules retraction from the I band faster than SR stacks disassembly, and (2) lack of calsequestrin-1 (CASQ1) induces a constitutive assembly of CEUs, resulting in enhanced SOCE that counteracts the SR Ca2+ depletion. We have now analyzed (1) CEUs during postnatal maturation (at 2 wk of age) and (2) whether CEUs form in slow-twitch fibers (soleus). (a) Compared with adult (4 mo) EDL fibers of resting WT mice, at 2 wk of age we found a greater longitudinal disposition of T-tubules associated to SR membranes forming junctions virtually identical to CEUs in adult EDLs of exercised WT mice, which promote increased STIM1/Orai1-mediated SOCE. (b) We also compared structure and function of soleus (which also express the cardiac isoform CASQ2) from WT mice and from mice lacking either CASQ1 (CASQ1-null) or CASQ1/2 (dCASQ-null). In soleus from both genotypes, CEUs are constitutively assembled although they appear structurally smaller than those described previously in exercised WT or CASQ1-null EDLs. A detailed EM quantitative analysis revealed that CEUs were more abundant in dCASQ-null than CASQ1-null mice. The amount of CEUs strictly correlated with the ability of soleus fibers to recover extracellular Ca2+ via SOCE to support contractility during high-frequency stimulation. These data were supported by molecular analysis of Western blots, showing that Orai1 expression was enhanced following ablation of CASQ.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Celia Biane ◽  
Florian Rückerl ◽  
Therese Abrahamsson ◽  
Cécile Saint-Cloment ◽  
Jean Mariani ◽  
...  

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.


Author(s):  
Shiro Nakamura ◽  
Risa Kajiwara ◽  
Tsuyoshi Noguchi ◽  
Kiyomi Nakayama ◽  
Ayako Mochizuki ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoqiang Sun ◽  
Liu Wang ◽  
S. M. Bukola Obayomi ◽  
Zong Wei

β cell dysfunction and failure are driving forces of type 2 diabetes mellitus (T2DM) pathogenesis. Investigating the underlying mechanisms of β cell dysfunction may provide novel targets for the development of next generation therapy for T2DM. Epigenetics is the study of gene expression changes that do not involve DNA sequence changes, including DNA methylation, histone modification, and non-coding RNAs. Specific epigenetic signatures at all levels, including DNA methylation, chromatin accessibility, histone modification, and non-coding RNA, define β cell identity during embryonic development, postnatal maturation, and maintain β cell function at homeostatic states. During progression of T2DM, overnutrition, inflammation, and other types of stress collaboratively disrupt the homeostatic epigenetic signatures in β cells. Dysregulated epigenetic signatures, and the associating transcriptional outputs, lead to the dysfunction and eventual loss of β cells. In this review, we will summarize recent discoveries of the establishment and disruption of β cell-specific epigenetic signatures, and discuss the potential implication in therapeutic development.


2021 ◽  
Author(s):  
Hojun Li ◽  
Jideofor Ezike ◽  
Anton Afanassiev ◽  
Laura Greenstreet ◽  
Stephen Y Zhang ◽  
...  

Hematopoiesis is a process of constitutive regeneration whereby hematopoietic stem and progenitor cells (HSPCs) replenish mature blood cells. During maturation and aging, HSPCs shift their output to support the demands of prenatal development and postnatal maturation both at homeostasis and in response to stress. How HSPC ontogeny changes throughout life is unknown; studies to date have largely focused on specific individual ages, particularly at single cell resolution. Here, we performed single cell RNA-seq of human HSPCs from early prenatal development into mature adulthood. We observed shifts in HSPC transcriptional states and differentiation trajectories over time. We identified age-specific gene expression patterns throughout human maturation and developed methods for identifying, prospectively purifying, and functionally validating age-specific HSC states. Together, our findings define the temporal maturation of human HSPCs and uncover principles applicable to age-biased blood diseases.


2021 ◽  
Vol 22 (15) ◽  
pp. 7944
Author(s):  
Anil Annamneedi ◽  
Miguel del Angel ◽  
Eckart D. Gundelfinger ◽  
Oliver Stork ◽  
Gürsel Çalışkan

A presynaptic active zone organizer protein Bassoon orchestrates numerous important functions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adulthood. We further provide evidence for a potential involvement of tropomyosin-related kinase B (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in adolescent (~4–5 weeks-old) mice. Electrophysiological analysis reveals increased field-excitatory-postsynaptic-potentials (fEPSPs) in the DG of the adult, but not in adolescent BsnEmx1cKO mice. In line with an increased TrkB expression during adulthood in BsnEmx1cKO, blockade of TrkB normalizes the increased synaptic excitability in the DG during adulthood, while no such effect was observed in adolescence. Accordingly, neurogenesis, which has previously been found to be increased in adult BsnEmx1cKO mice, was unaffected at adolescent age. Our results suggest that Bassoon plays a crucial role in the TrkB-dependent postnatal maturation of the hippocampus.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1686
Author(s):  
Adelaida M. Celaya ◽  
Lourdes Rodríguez-de la Rosa ◽  
Jose M. Bermúdez-Muñoz ◽  
José M. Zubeldia ◽  
Carlos Romá-Mateo ◽  
...  

Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/− mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.


Sign in / Sign up

Export Citation Format

Share Document