nutrient utilisation
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
pp. 1-14
Author(s):  
P. Weththasinghe ◽  
J.Ø. Hansen ◽  
M. Rawski ◽  
D. Józefiak ◽  
S. Ghimire ◽  
...  

The present study investigated the effect of meals and fractions of black soldier fly larvae (BSFL; Hermetia illucens) in diets for Atlantic salmon (Salmo salar) on the physical quality of feed pellets, nutrient utilisation, and growth performance. Six extruded diets were produced: control diet (CD); full-fat BSFL meal diet (IM); defatted BSFL meal diet (DFIM); de-chitinised BSFL meal diet (DCIM); BSFL oil diet (IO) and BSFL exoskeleton diet (EX). The full-fat, defatted and de-chitinised meals replaced 15% of protein in the control diet. An eight-week study was conducted using salmon with average 28 g initial weight. The full-fat and de-chitinised meals in the diets numerically reduced pellet hardness, expansion, and water stability. The full-fat and de-chitinised meals improved growth rate of salmon, whilst defatted meal, oil and exoskeleton supported similar growth performance as the control. Feed intake and growth rate of fish fed full-fat meal diet were higher than those fed the other insect diets, but defatted meal gave a better feed conversion ratio than full-fat meal. Defatted meal, de-chitinised meal and exoskeleton reduced protein digestibility in fish, however; defatted meal increased the digested protein retention. In conclusion, use of full-fat BSFL meal improved feed intake and growth rate of salmon when replacing 15% of dietary protein. The present results suggest that less processed fullfat form of BSFL is more optimal in diets for salmon and further processing to remove lipid or exoskeleton fractions would only lead to an additional cost.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260285
Author(s):  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Shiva Greenhalgh ◽  
Mehdi Toghyani ◽  
Peter H. Selle ◽  
...  

The objective of this study was to investigate the impacts of dietary crude protein (CP), fishmeal and sorghum on nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein, amino acid concentrations in systemic plasma and their relevance to growth performance of broiler chickens using the Box-Behnken response surface design. The design consisted of three factors at three levels including dietary CP (190, 210, 230 g/kg), fishmeal (0, 50, 100 g/kg), and sorghum (0, 150, 300 g/kg). A total of 390 male, off-sex Ross 308 chicks were offered experimental diets from 14 to 35 days post-hatch. Growth performance, nutrient utilisation, starch and protein digestibilities and plasma free amino acids were determined. Dietary CP had a negative linear impact on weight gain where the transition from 230 to 190 g/kg CP increased weight gain by 9.43% (1835 versus 2008 g/bird, P = 0.006). Moreover, dietary CP linearly depressed feed intake (r = -0.486. P < 0.001). Fishmeal inclusions had negative linear impacts on weight gain (r = -0.751, P < 0.001) and feed intake (r = -0.495, P < 0.001). There was an interaction between dietary CP and fishmeal for FCR. However, growth performance was not influenced by dietary inclusions of sorghum. Total plasma amino acid concentrations were negatively related to weight gain (r = -0.519, P < 0.0001). The dietary transition from 0 to 100 g/kg fishmeal increased total amino acid concentrations in systemic plasma by 35% (771 versus 1037 μg/mL, P < 0.001). It may be deduced that optimal weight gain (2157 g/bird), optimal feed intake (3330 g/bird) and minimal FCR (1.544) were found in birds offered 190 g/kg CP diets without fishmeal inclusion, irrespective of sorghum inclusions. Both fishmeal and sorghum inclusions did not alter protein and starch digestion rate in broiler chickens; however, moderate reductions in dietary CP could advantage broiler growth performance.


2021 ◽  
Author(s):  
◽  
Alejandra Perea-Blázquez

<p>Sponges are an important component of New Zealand subtidal communities and play many key functional roles in marine ecosystems, including competition for space, facilitating primary production, nutrient cycling, bioerosion, and interactions with the water column. Sponges are involved in the bidirectional movement of detritus, nutrients, micro-organisms and planktonic particles both to and from the benthos to the pelagic ecosystem, thereby affecting pelagic processes. As suspension-feeders, sponges are capable of filtering large volumes of water, and they depend on food that is suspended in the water column, meaning that their interaction with the water column is likely to be very important. The main goal of my research was to investigate the interactions between sponges and the water column and how this varies in relation to sponge characteristics, nutrient fluxes, seasonality and food supply. I studied the diet composition of 10 sponge species that are abundant and widely distributed along the south coast of Wellington, New Zealand. I found that the diet of the sponge species analysed comprised three types of picoplanktonic organisms: heterotrophic bacteria, Prochlorococcus, and Synechococcus. These micro-organisms (picoplankton) that sponges feed on are vital for benthic food webs because they are involved in the transformation and cycling process of dissolved inorganic nutrients before they become available to other marine organisms. The results from this thesis demonstrated that different sponge species have different retention efficiencies for different types of picoplankton and I propose that this suggests intra-phyletic food particle niche partitioning among sponges. While these findings support the partitioning of food resources between different co-existing sponge species, they also suggest that partitioning may not be essential for co-existence, as some species had similar retention efficiencies implying an overlap in resource use. By measuring rates of carbon assimilation in the form of planktonic food particles, combined with data on a number of characteristics of the sponge species analysed, I found that sponge assemblages play a key role in the transfer of energy from the water column to the benthos. The results from this thesis indicate that there is a wide range of food concentrations in the rocky reefs where the study species are living, over which retention rate, nutrient utilisation and carbon consumption varied temporally. This emphasises the importance of understanding temporal variation in productivity, and suggests that such variations are likely to have important implications for suspension-feeders. By integrating the feeding results with estimations of oxygen consumption rates, and the amount of carbon obtained from the different micro-organisms found in the water column, preliminary carbon budgets were created. These budgets were used to quantify the capacity of carbon obtained via heterotrophic suspension-feeding to support sponge metabolism, as well as infer the potential for this carbon to support other processes such as sponge growth and reproduction. Overall, this project was the first to consider the functional roles of sponges in New Zealand marine ecosystems and provided useful information on their ecological and biological importance. The large amounts of carbon that sponges transfer from the water column to the benthos, in conjunction with the other findings of my thesis, increase our understanding of the ecology of temperate sponges.</p>


2021 ◽  
Author(s):  
◽  
Alejandra Perea-Blázquez

<p>Sponges are an important component of New Zealand subtidal communities and play many key functional roles in marine ecosystems, including competition for space, facilitating primary production, nutrient cycling, bioerosion, and interactions with the water column. Sponges are involved in the bidirectional movement of detritus, nutrients, micro-organisms and planktonic particles both to and from the benthos to the pelagic ecosystem, thereby affecting pelagic processes. As suspension-feeders, sponges are capable of filtering large volumes of water, and they depend on food that is suspended in the water column, meaning that their interaction with the water column is likely to be very important. The main goal of my research was to investigate the interactions between sponges and the water column and how this varies in relation to sponge characteristics, nutrient fluxes, seasonality and food supply. I studied the diet composition of 10 sponge species that are abundant and widely distributed along the south coast of Wellington, New Zealand. I found that the diet of the sponge species analysed comprised three types of picoplanktonic organisms: heterotrophic bacteria, Prochlorococcus, and Synechococcus. These micro-organisms (picoplankton) that sponges feed on are vital for benthic food webs because they are involved in the transformation and cycling process of dissolved inorganic nutrients before they become available to other marine organisms. The results from this thesis demonstrated that different sponge species have different retention efficiencies for different types of picoplankton and I propose that this suggests intra-phyletic food particle niche partitioning among sponges. While these findings support the partitioning of food resources between different co-existing sponge species, they also suggest that partitioning may not be essential for co-existence, as some species had similar retention efficiencies implying an overlap in resource use. By measuring rates of carbon assimilation in the form of planktonic food particles, combined with data on a number of characteristics of the sponge species analysed, I found that sponge assemblages play a key role in the transfer of energy from the water column to the benthos. The results from this thesis indicate that there is a wide range of food concentrations in the rocky reefs where the study species are living, over which retention rate, nutrient utilisation and carbon consumption varied temporally. This emphasises the importance of understanding temporal variation in productivity, and suggests that such variations are likely to have important implications for suspension-feeders. By integrating the feeding results with estimations of oxygen consumption rates, and the amount of carbon obtained from the different micro-organisms found in the water column, preliminary carbon budgets were created. These budgets were used to quantify the capacity of carbon obtained via heterotrophic suspension-feeding to support sponge metabolism, as well as infer the potential for this carbon to support other processes such as sponge growth and reproduction. Overall, this project was the first to consider the functional roles of sponges in New Zealand marine ecosystems and provided useful information on their ecological and biological importance. The large amounts of carbon that sponges transfer from the water column to the benthos, in conjunction with the other findings of my thesis, increase our understanding of the ecology of temperate sponges.</p>


Author(s):  
Hyomee Lee ◽  
Byung-Kwon Moon ◽  
Hyun-Chae Jung ◽  
Jong-Yeon Park ◽  
Sungbo Shim ◽  
...  

AbstractEarth system models (ESMs) comprise various Earth system components and simulate the interactions between these components. ESMs can be used to understand climate feedbacks between physical, chemical, and biological processes and predict future climate. We developed a new ESM, UKESM-TOPAZ, by coupling the UK ESM (UKESM1) and the Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) biogeochemical module. We then compared the preliminary simulated biogeochemical variables, which were conducted over a period of 70 years, using observational and existing UKESM1 model data. Similar to UKESM1, the newly developed UKESM-TOPAZ closely simulated the relationship between the El Niño-Southern Oscillation and chlorophyll concentration anomalies during the boreal winter. However, there were differences in the chlorophyll distributions in the eastern equatorial Pacific between the two models, which were due to dissolved iron, as this value was higher in UKESM-TOPAZ than in UKESM1. In a mean field analysis, the distributions of the major marine biogeochemical variables in UKESM-TOPAZ (i.e., nitrate, silicate, dissolved oxygen, dissolved inorganic carbon, and alkalinity) were not significantly different from those of UKESM1, likely because the models share the same initial conditions. Our results indicate that TOPAZ has a simulation performance that does not lag behind UKESM1’s basic biogeochemical model (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration, and Acidification; MEDUSA). The UKESM-TOPAZ model can simulate the variability of the observed Niño 3.4 and 4 indices more closely than UKESM1. Thus, the UKESM-TOPAZ model can be used to deepen our understanding of the Earth system and to estimate ESM uncertainty.


2021 ◽  
Vol 13 (19) ◽  
pp. 11019
Author(s):  
Emily Burton ◽  
Dawn Scholey ◽  
Ashraf Alkhtib ◽  
Peter Williams

The recent conceptual pivot from bioethanol production to ethanol biorefining has led to development of protein derived by fractionating the non-ethanol streams post fermentation within the plant. The aim of this study was to identify the effect of replacing dietary soy with corn-fermented protein (CFP) on performance of fast-growing meat species and the impact on the carbon footprint associated with the feed for each species. The study contains trials on 3 species, broiler, turkey and salmon. In trial one, 324 broiler chicks were allocated randomly to 36 pens distributed into 3 dietary treatments; control (0% CFP), 5% CFP and 10% CFP; for 35 days. In trial 2, 150 turkey poults were allocated to 3 treatments: control (0 CFP), 4% CFP and 8% CFP for 35 days. In trial 3, 525 Atlantic Salmon (starting weight 304 g ± 10.7 g) were raised in 15 saltwater tanks for 84 days with 5 treatments, control (0% CFP), 5% CFP, 10% CFP, 15% CFP and 20% CFP. Growth response, nutrient utilisation and carbon footprint were assessed in each trial. Replacement of soy with CFP showed limited differences in growth response and nutrient utilization but replacing soy bean meal with CFP at rate of 5%, 8% and 10% in broiler, turkey and salmon diets, respectively resulted in a 14% decrease in carbon footprint of diet manufacturing. This investigation shows coupling bioethanol production with poultry and salmon production represents a highly effective circular economy contributing to multiple UN Sustainable Development Goals.


Sign in / Sign up

Export Citation Format

Share Document