conventional heat treatment
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 4)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Alexandra Fedoseeva ◽  
Ivan Nikitin ◽  
Nadezhda Dudova ◽  
John Hald ◽  
Rustam Kaibyshev

This paper presents the results of an experimental investigation of a 12% Cr steel where a significant increase in Charpy impact toughness and a slight decrease in ductile-brittle transition temperature (DBTT) from 70 °C to 65 °C were obtained through thermo-mechanical processing, including interim hot forging at 1050 °C with long-term annealing at 1000 °C, as compared with conventional heat treatment. At lower temperatures ranging from −20 °C to 25 °C, the value of impact toughness comprised ~40 J cm−2 in the present 12% Cr steel subjected to thermo-mechanical processing. The amount of δ-ferrite decreased to 3.8%, whereas the size of prior austenite grains did not change and comprised about 40–50 μm. The boundaries between δ-ferrite and martensitic laths were decorated by continuous chains of Cr- and W-rich carbides. M23C6 carbides also precipitated along the boundaries of prior austenite grains, packets, blocks and martensitic laths. Thermo-mechanical processing increased the mean size of M23C6 carbides and decreased their number particle densities along the lath boundaries. Moreover, the precipitation of a high number of non-equilibrium V-rich MX particles was induced by hot forging and long-term normalizing at 1000 °C for 24 h.


Author(s):  
Kaweewat Worasaen ◽  
Piyada Suwanpinij ◽  
Karuna Tuchinda

This research aimed to investigate the microstructure modification mechanism used to improve the hardness and wear resistance of SKH51 steel. The cryogenic treatment (CT), including both shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT), was used to modify the microstructure of SKH51 steel in this research. The effect of short and long holding time (12 and 36 h) in CT was studied. The microstructures were evaluated by using a light optical microscopy (LOM) and a scanning electron microscopy (SEM). The phase identifications of the matrix, carbides, and a-parameter of the matrix were analyzed by using X-ray diffraction (XRD). The M6C and MC carbides size, aspect ratio, and distribution were analyzed using digimizer image analysis software on the SEM micrographs. Micro-Vickers were employed to evaluate the hardness of the targeted samples. Wear tests were performed by using a 6 mm diameter WC ball as the indenter and 5-N-constant load with a ball-on-disk wear tester. The results suggested that the increase of the secondary carbide was caused by the contraction and expansion phenomena of the matrix’s lattice, forcing the carbon atom out and acting as the carbide nucleation. The influence of holding time in the SCT and DCT regions was different. For the SCT, increasing the holding time increased the volume’s fraction of MC carbide. Conversely, the M6C carbide size grew with increasing holding time in the DCT region, while no significant increase in the number of MC carbide was observed. The cryogenic treatment was found to increase the volume fraction of the MC carbide by up to 10% compared to the conventional heat treatment (CHT) condition in the SCT region (both 12 and 36 h) and DCT with 12 h holding time. Due to the microstructure modification, it was found that the cryogenic treatment can improve material hardness and lead to an increase in the wear resistance of SKH51 by up to 70% compared to the CHT treated material. This was due to the increase in the compressive residual stress, precipitation of the MC, and growth of the M6C primary carbide.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1690
Author(s):  
Young-Gy Song ◽  
Jun-Seok Oh ◽  
Baig-Gyu Choi ◽  
Chang-Yong Jo ◽  
Je-Hyun Lee

The precipitation behavior of M23C6 carbide during thermal treatment of high-Cr white iron with various fractions of primarily solidified dendrite was studied and reviewed. M23C6 precipitation in the primarily solidified dendrite occurred preferentially during conventional heat treatment, whereas it occurred scarcely in the eutectic austenite. The reaction between M7C3 and austenite caused the dissolution of M7C3 into austenite, followed by precipitation of M23C6 along the periphery of eutectic M7C3. Relatively low-temperature thermal treatment (modified heat treatment) led to precipitation of M23C6 particles in the eutectic austenite, which is presumed to be caused by solubility difference depending on temperature.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1576
Author(s):  
Jun-Seok Oh ◽  
Young-Gy Song ◽  
Baig-Gyu Choi ◽  
Chalothorn Bhamornsut ◽  
Rujeeporn Nakkuntod ◽  
...  

High Cr white irons with various fractions of primary dendrite have been prepared through the modification of their chemical composition. Increasing C and Cr contents decreased the primary dendrite fraction. Eutectic solidification occurred with the phase fraction ratio of austenite: M7C3 = 2.76:1. The measured primary dendrite fractions were similar to the calculated results. ThermoCalc calculation successfully predicted fractions of M7C3, austenite, and M23C6. Conventional heat treatment at high temperature caused a destabilization of austenite, releasing it’s solute elements to form M23C6 carbide. Precipitation of M23C6 during destabilization preferentially occurred within primary (austenite) dendrite, however, the precipitation scarcely occurred within austenite in eutectic phase. Thus, M23C6 precipitation by destabilization was relatively easy in alloys with a high fraction of primary dendrite.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiaoming Liao ◽  
Han Tao ◽  
Yali Li ◽  
Yi Xu ◽  
Hui-Li Wang

The contamination of infant milk and powder with Enterobacter sakazakii poses a risk to human health and frequently caused recalls of affected products. This study aims to explore the inactivation mechanism of E. sakazakii induced by high hydrostatic pressure (HHP), which, unlike conventional heat treatment, is a nonthermal technique for pasteurization and sterilization of dairy food without deleterious effects. The mortality of E. sakazakii under minimum reaction conditions (50 MPa) was 1.42%, which was increased to 33.12% under significant reaction conditions (400 MPa). Scanning electron microscopy (SEM) and fluorescent staining results showed that 400 MPa led to a loss of physical integrity of cell membranes as manifested by more intracellular leakage of nucleic acid, intracellular protein and K+. Real-time quantitative PCR (RT-qPCR) analysis presents a downregulation of three functional genes (glpK, pbpC, and ompR), which were involved in cell membrane formation, indicating a lower level of glycerol utilization, outer membrane protein assembly, and environmental tolerance. In addition, the exposure of E. sakazakii to HHP modified oxidative stress, as reflected by the high activity of catalase and super oxide dismutase. The HHP treatment lowered down the gene expression of flagellar proteins (fliC, flgI, fliH, and flgK) and inhibited biofilm formation. These results determined the association of genotype to phenotype in E. sakazakii induced by HHP, which was used for the control of food-borne pathogens.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2214
Author(s):  
Ivana Gazikalović ◽  
Jelena Mijalković ◽  
Nataša Šekuljica ◽  
Sonja Jakovetić Tanasković ◽  
Aleksandra Đukić Vuković ◽  
...  

In this study, we assessed the effects of microwave irradiation of wheat gluten proteins as a pretreatment performed in a microwave reactor that could accurately control process parameters as a function of power and temperature, as well as comparing it with conventional heat treatment. The aim was to identify suitable combinations of partial enzymatic hydrolysis and microwave pretreatment parameters to produce gluten hydrolysates with reduced allergenicity and conserved techno-functional features for food application. FTIR analysis, and total and reactive SH group contents confirmed that the microwave-controlled heating can significantly change the secondary structure and conformation of gluten protein. The microwave treatment had the largest effect at 200 W and 100 °C, at which the content of gluten has been reduced by about 2.5-fold. The microwave pretreatment also accelerated the enzymatic hydrolysis of gluten, changing the kinetic profile. The apparent hydrolysis rate constants (k2) were 1.00, 3.68, 3.48, 4.64 and 4.17 min−1 for untreated gluten, and those pretreated with microwave power of 200, 400, 600 and 800 W, respectively. Compared to the heat treatment, it appeared that microwave specific non-thermal effects had a significant influence on the gluten structure and allergenicity and, in combination with the enzymatic hydrolysis, ultimately yielded protein hydrolysates with enhanced antioxidant and functional properties.


2021 ◽  
Author(s):  
Andrew S. Dickinson

Abstract After manufacturing coil springs, internal stresses exist within the steel wire. These stresses can lead to defects and may impact the working lifespan of springs. Stress must be relieved to maximize the elastic properties of the spring alloys. Stress relief is a critical step during the manufacturing process, typically using large belt furnaces and convection ovens. The fluidized bed heat treatment system is an alternative for stress relief of small- and medium-sized coil springs. Springs are suspended in a parts basket and deposited into a fluidized bed furnace, consisting of fine aluminum oxide particles gently mixed by an upward air flow. With its high heat transfer coefficient, fluidized bed relieves the stress in coil springs in significantly less time than other conventional heat treatment methods. Bed temperature is accurately controlled using either electric heaters, with excellent thermal uniformity throughout the working area of the bed. Fluidized bed, with its advantages of uniformity and quick turnaround time, render it the best option for the rapid and efficient stress relief processing of coil springs and heat treatment of other metal components.


2021 ◽  
Vol 4 (1) ◽  
pp. Manuscript
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan ◽  
Manote Rithinyo

Tool steels used in marine industries demand for the effective approach to enhance their properties. Normally, conventional heat treatment is widely used to increase the performance of tool steels. However, this method cannot fully enhance the tool steel performance. On the other hand, cryogenic treatment is a supplementary process to the conventional heat treatment, which can promote the conversion of retained austenite to martensite and accelerate the precipitation of fine carbides. In this paper, a systematic review of cryogenic treatment of tool steels was presented. A wide range of useful investigations was reviewed, particularly in the details of the transformation of retained austenite to martensite and the precipitation of the fine carbides. A case study on a tool steel subjected to conventional heat treatment, conventional cold treatment, and deep cryogenic treatment was also given and discussed to give an insight in the cryogenic treatment of tool steels.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4943
Author(s):  
Paweł Mazuro ◽  
Julia Pieńkowska ◽  
Ewa Rostek

The construction of an engine requires optimized geometry and superb material properties in various environments. Tensile and yield strength are not the only parameters essential to consider. Hardness, impact toughness, and ductile-brittle transition temperature (DBTT) are also crucial. In this paper, Balder, Chromium-Molybdenum-Vanadium-Nickel steel with low impact toughness attested is considered. It contains both high Nickel and high Vanadium content, a rare combination among iron-based alloys. This study aims at proving that conventional heat treatment can improve its impact toughness while maintaining hardness level, exceeding its to-date performance. Steel’s exact elemental composition was checked, and material samples’ hardness and impact toughness were measured. Four heat treatments were proposed, then hardness and impact toughness were measured again. It was established that impact toughness over three times higher than marketed (57.3 J against 17 J) can be achieved with simultaneous 2 HRC points (from 46.4 HRC to 48.4 HRC) rise in hardness. Achieved parameters place examined alloy at the high-ranking position among similar steels. Occurrence of temper embrittlement was avoided. Notably, the ductile-brittle transition was not observed in any sample.


Sign in / Sign up

Export Citation Format

Share Document