rat brain and liver
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 8)

H-INDEX

31
(FIVE YEARS 0)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Hang Cheng ◽  
Yiming (Amy) Qin ◽  
Rashpal Dhillon ◽  
James Dowell ◽  
John M. Denu ◽  
...  

Hypoxia poses a major physiological challenge for mammals and has significant impacts on cellular and systemic metabolism. As with many other small rodents, naked mole-rats (NMRs; Heterocephalus glaber), who are among the most hypoxia-tolerant mammals, respond to hypoxia by supressing energy demand (i.e., through a reduction in metabolic rate mediated by a variety of cell- and tissue-level strategies), and altering metabolic fuel use to rely primarily on carbohydrates. However, little is known regarding specific metabolite changes that underlie these responses. We hypothesized that NMR tissues utilize multiple strategies in responding to acute hypoxia, including the modulation of signalling pathways to reduce anabolism and reprogram carbohydrate metabolism. To address this question, we evaluated changes of 64 metabolites in NMR brain and liver following in vivo hypoxia exposure (7% O2, 4 h). We also examined changes in matched tissues from similarly treated hypoxia-intolerant mice. We report that, following exposure to in vivo hypoxia: (1) phenylalanine, tyrosine and tryptophan anabolism are supressed both in NMR brain and liver; (2) carbohydrate metabolism is reprogramed in NMR brain and liver, but in a divergent manner; (3) redox state is significantly altered in NMR brain; and (4) the AMP/ATP ratio is elevated in liver. Overall, our results suggest that hypoxia induces significant metabolic remodelling in NMR brain and liver via alterations of multiple metabolic pathways.


2021 ◽  
Vol 22 (19) ◽  
pp. 10249
Author(s):  
Yulia Baburina ◽  
Irina Odinokova ◽  
Olga Krestinina

Background: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. Methods: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. Results: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.


Toxicology ◽  
2021 ◽  
Vol 451 ◽  
pp. 152685
Author(s):  
Bobo Yang ◽  
Wenjun Zhao ◽  
Changsheng Yin ◽  
Yu Bai ◽  
Suhua Wang ◽  
...  

2017 ◽  
Vol 11 (4) ◽  
pp. 266-271 ◽  
Author(s):  
O. V. Galkina ◽  
A. A. Bakhtyukov ◽  
M. O. Akhmetshin ◽  
V. M. Prokopenko ◽  
N. D. Eshchenko

Sign in / Sign up

Export Citation Format

Share Document