dirichlet problems
Recently Published Documents


TOTAL DOCUMENTS

669
(FIVE YEARS 106)

H-INDEX

34
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 237
Author(s):  
Calogero Vetro

In this paper, we consider local Dirichlet problems driven by the (r(u),s(u))-Laplacian operator in the principal part. We prove the existence of nontrivial weak solutions in the case where the variable exponents r,s are real continuous functions and we have dependence on the solution u. The main contributions of this article are obtained in respect of: (i) Carathéodory nonlinearity satisfying standard regularity and polynomial growth assumptions, where in this case, we use geometrical and compactness conditions to establish the existence of the solution to a regularized problem via variational methods and the critical point theory; and (ii) Sobolev nonlinearity, somehow related to the space structure. In this case, we use a priori estimates and asymptotic analysis of regularized auxiliary problems to establish the existence and uniqueness theorems via a fixed-point argument.


2022 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
David Arcoya ◽  
◽  
Lucio Boccardo ◽  
Luigi Orsina ◽  
◽  
...  

<abstract><p>In this paper, dedicated to Ireneo Peral, we study the regularizing effect of some lower order terms in Dirichlet problems despite the presence of Hardy potentials in the right hand side.</p></abstract>


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Félix del Teso ◽  
Erik Lindgren

AbstractWe propose a new monotone finite difference discretization for the variational p-Laplace operator, $$\Delta _pu=\text{ div }(|\nabla u|^{p-2}\nabla u),$$ Δ p u = div ( | ∇ u | p - 2 ∇ u ) , and present a convergent numerical scheme for related Dirichlet problems. The resulting nonlinear system is solved using two different methods: one based on Newton-Raphson and one explicit method. Finally, we exhibit some numerical simulations supporting our theoretical results. To the best of our knowledge, this is the first monotone finite difference discretization of the variational p-Laplacian and also the first time that nonhomogeneous problems for this operator can be treated numerically with a finite difference scheme.


Author(s):  
D. Breit ◽  
A. Cianchi ◽  
L. Diening ◽  
S. Schwarzacher

AbstractAn optimal first-order global regularity theory, in spaces of functions defined in terms of oscillations, is established for solutions to Dirichlet problems for the p-Laplace equation and system, with the right-hand side in divergence form. The exact mutual dependence among the regularity of the solution, of the datum on the right-hand side, and of the boundary of the domain in these spaces is exhibited. A comprehensive formulation of our results is given in terms of Campanato seminorms. New regularity results in customary function spaces, such as Hölder, $$\text {BMO}$$ BMO and $${{\,\mathrm{VMO}\,}}$$ VMO spaces, follow as a consequence. Importantly, the conclusions are new even in the linear case when $$p=2$$ p = 2 , and hence the differential operator is the plain Laplacian. Yet in this classical linear setting, our contribution completes and augments the celebrated Schauder theory in Hölder spaces. A distinctive trait of our results is their sharpness, which is demonstrated by a family of apropos examples.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 271
Author(s):  
Dumitru Motreanu

This paper focuses on two Dirichlet boundary value problems whose differential operators in the principal part exhibit a lack of ellipticity and contain a convection term (depending on the solution and its gradient). They are driven by a degenerated (p,q)-Laplacian with weights and a competing (p,q)-Laplacian with weights, respectively. The notion of competing (p,q)-Laplacians with weights is considered for the first time. We present existence and approximation results that hold under the same set of hypotheses on the convection term for both problems. The proofs are based on weighted Sobolev spaces, Nemytskij operators, a fixed point argument and finite dimensional approximation. A detailed example illustrates the effective applicability of our results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongliang Gao ◽  
Jing Xu

AbstractIn this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) , and $f(u)>0$ f ( u ) > 0 for $0< u< L$ 0 < u < L . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies $f''(u)>0$ f ″ ( u ) > 0 and $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) for $0< u< L$ 0 < u < L . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.


Author(s):  
Jordan Hristov

The paper addresses diffusion approximations of magnetic field penetration of ferromagnetic materials with emphasis on fractional calculus applications and relevant approximate solutions. Examples with applications of time-fractional semi-derivatives and singular kernel models (Caputo time fractional operator) in cases of field independent and field-dependent magnetic diffusivities have been developed: Dirichlet problems and time-dependent boundary condition (power-law ramp). Approximate solutions in all theses case have been developed by applications of the integral-balance method and assumed parabolic profile with unspecified exponents. Tow version of the integral method have been successfully implemented: SDIM (single integration applicable to time-fractional semi-derivative model) and DIM (double-integration model to fractionalized singular memory models). The fading memory approach in the sense of the causality concept and memory kernel effect on the model constructions have been discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Stanin

Abstract We study regularity properties of variational solutions to a class of Cauchy–Dirichlet problems of the form { ∂ t ⁡ u - div x ⁡ ( D ξ ⁢ f ⁢ ( D ⁢ u ) ) = 0 in  ⁢ Ω T , u = u 0 on  ⁢ ∂ 𝒫 ⁡ Ω T . \left\{\begin{aligned} \displaystyle\partial_{t}u-\operatorname{div}_{x}(D_{% \xi}f(Du))&\displaystyle=0&&\displaystyle\phantom{}\text{in }\Omega_{T},\\ \displaystyle u&\displaystyle=u_{0}&&\displaystyle\phantom{}\text{on }\partial% _{\mathcal{P}}\Omega_{T}.\end{aligned}\right. We do not impose any growth conditions from above on f : ℝ n → ℝ {f\colon\mathbb{R}^{n}\to\mathbb{R}} , but only require it to be convex and coercive. The domain Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} is mainly supposed to be bounded and convex, and for the time-independent boundary datum u 0 : Ω ¯ → ℝ {u_{0}\colon\overline{\Omega}\to\mathbb{R}} we only require continuity. These requirements are weaker than a one-sided bounded slope condition. We prove global continuity of the unique variational solution u : Ω T → ℝ {u\colon\Omega_{T}\to\mathbb{R}} . If the boundary datum is Lipschitz continuous, we obtain global Hölder continuity of the solution.


Author(s):  
Zhiqian He ◽  
Liangying Miao

Abstract In this paper, we study the number of classical positive radial solutions for Dirichlet problems of type (P) − d i v ∇ u 1 − | ∇ u | 2 = λ f ( u )   in B 1 , u = 0                     on ∂ B 1 , $$\left\{\begin{aligned}\hfill & -\mathrm{d}\mathrm{i}\mathrm{v}\left(\frac{\nabla u}{\sqrt{1-\vert \nabla u{\vert }^{2}}}\right)=\lambda f(u)\quad \text{in}\enspace {B}_{1},\hfill \\ \hfill & u=0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \text{on}\enspace \partial {B}_{1},\enspace \hfill \end{aligned}\right.$$ where λ is a positive parameter, B 1 = { x ∈ R N : | x | < 1 } ${B}_{1}=\left\{x\in {\mathbb{R}}^{N}:\vert x\vert {< }1\right\}$ , f : [0, ∞) → [0, ∞) is a continuous function. Using the fixed point index in a cone, we prove the results on both uniqueness and multiplicity of positive radial solutions of (P).


Sign in / Sign up

Export Citation Format

Share Document