spectral localization
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Anthony Osei Tutu ◽  
Christopher Harig

Earth’s long-wavelength geoid provides insights into the thermal, structural, and compositional evolution of the mantle. Historically, most estimates of mantle viscosity using the long-wavelength geoid have considered radial variations with depth in a symmetric Earth. Global estimates of this kind suggest an increase in viscosity from the upper mantle to lower mantle of roughly 2 -- 3 orders of magnitude. Using a spatio-spectral localization technique with the geoid, here we estimate a series of locally constrained viscosity-depth profiles covering two unique regions, the Pacific and Atlantic hemispheres, which show distinct rheological properties. The Pacific region exhibits the conventional Earth's 1D rheology with a factor of roughly 80-100 increase in viscosity occurring at transition zone depths (400 - 800 km). The Atlantic region in contrast does not show significant viscosity jumps with depth, and instead has a near uniform viscosity in the top 1000~km. The inferred viscosity variations between our two regions could be due to the prevalence of present-day subduction in the Pacific and the infrequence of slabs in the Atlantic, combined with a possible hydrated transition zone and mid-mantle of the Atlantic region by ancient subduction during recent supercontinent cycles. Rigid slab material within the top 800 km, with about 90\% Majoritic garnet in the form of subducted oceanic crust, coupled with unique regional mantle structures, may be generating a strong transition zone viscosity interface for the Pacific region. These effective lateral variations in mantle viscosity could play a role in the observed deformation differences between the Pacific and Atlantic hemispheres.


2022 ◽  
Author(s):  
Anthony Osei Tutu ◽  
Christopher Harig

Abstract. We present regional constraints of mantle viscosity for North America using a local Bayesian joint inversion of mantle flow and glacial isostatic adjustment (GIA) models. Our localized mantle flow model uses new local geoid kernels created via spatio-spectral localization using Slepain basis functions, convolved with seismically derived mantle density to calculate and constrain against the regional free-air gravity field. The joint inversion with GIA uses two deglaciation of ice sheet models (GLAC1D-NA and ICE-6G-NA) and surface relative sea level data. We solve for the local 1D mantle viscosity structure for the entire North America (NA) region, the eastern region including Hudson Bay, and the western region of North America extending into the Pacific plate. Our results for the entire NA region show one order of magnitude viscosity jump at the 670 km boundary using a high seismic density scaling parameter (e.g., δlnp/δlnvs = 0.3). Seismic scaling parameter demonstrates significant influence on the resulting viscosity profile. However, when the NA region is further localized into eastern and western parts, the scaling factor becomes much less important for dictating the resulting upper mantle viscosity characteristics. Rather the respective local mantle density heterogeneities provide the dominate control on the upper mantle viscosity. We infer local 1D viscosity profiles that reflect the respective tectonic settings of each region's upper mantle, including a weak and shallow asthenosphere layer in the west, and deep sharp viscosity jumps in the eastern transition zone, below the suggested/proposed depth range of the eastern continental root.


Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Ram Tuvi ◽  
Zeyu Zhao ◽  
Mrinal Kanti Sen

We consider the problem of image-domain least-squares migration based on efficiently constructing the Hessian matrix with sparse beam data. Specifically, we use the ultra-wide-band phase space beam summation method, where beams are used as local basis functions to represent scattered data collected at the surface. The beam domain data are sparse. One can identify seismic events with significant contributions so that only beams with non-negligible amplitudes need to be used to image the subsurface. In addition, due to the beams' spectral localization, only beams that pass near an imaging point need to be taken into account. These two properties reduce the computational complexity of computing the Hessian matrix - an essential ingredient for least-squares migration. As a result, we can efficiently construct the Hessian matrix based on analyzing the sparse beam domain data.


2021 ◽  
Author(s):  
Sebastian Weidemann ◽  
Mark Kremer ◽  
Stefano Longhi ◽  
Alexander Szameit

AbstractAnderson’s groundbreaking discovery that the presence of stochastic imperfections in a crystal may result in a sudden breakdown of conductivity1 revolutionized our understanding of disordered media. After stimulating decades of studies2, Anderson localization has found applications in various areas of physics3–12. A fundamental assumption in Anderson’s treatment is that no energy is exchanged with the environment. Recently, a number of studies shed new light on disordered media with dissipation14–22. In particular it has been predicted that random fluctuations solely in the dissipation, introduced by the underlying potential, could exponentially localize all eigenstates (spectral localization)14, similar to the original case without dissipation that Anderson considered. We show in theory and experiment that uncorrelated disordered dissipation can simultaneously cause spectral localization and wave spreading (dynamical delocalization). This discovery implies the breakdown of the commonly known correspondence between spectral and dynamical localization known from the Hermitian Anderson model with uncorrelated disorder.


Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Nathália F. T. Aniceto ◽  
Jorge Seki ◽  
Ingrid Moerman ◽  
Gustavo Fraidenraich

The advances mobile communications has seen in recent years has rendered the radio spectrum a limited and, hence, an expensive resource. Therefore, technologies that support unlicensed access to spectrum are needed. Therefore, the adoption of novel modulation schemes becomes of utmost importance to obtain better spectral-localization and reduce the OOBE (\textit{Out of Band Emission}) inherent to OFDM (\textit{Orthogonal Frequency Division Multiplexing}) and, consequently, mitigating the interference between secondary (\textit{unlicensed}) and primary users. In this scenario, we assess the gain in the bit error probability using f-OFDM (\textit{filtered-OFDM}) in MIMO systems, both used in the 5G RANGE project.


Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Nathália F. T. Aniceto ◽  
Jorge Seki ◽  
Ingrid Moerman ◽  
Gustavo Fraidenraich

The advances mobile communications has seen in recent years has rendered the radio spectrum a limited and, hence, an expensive resource. Therefore, technologies that support unlicensed access to spectrum are needed. Therefore, the adoption of novel modulation schemes becomes of utmost importance to obtain better spectral-localization and reduce the OOBE (\textit{Out of Band Emission}) inherent to OFDM (\textit{Orthogonal Frequency Division Multiplexing}) and, consequently, mitigating the interference between secondary (\textit{unlicensed}) and primary users. In this scenario, we assess the gain in the bit error probability using f-OFDM (\textit{filtered-OFDM}) in MIMO systems, both used in the 5G RANGE project.


Author(s):  
Hamza Guebbai ◽  
Sami Segni ◽  
Mourad Ghiat ◽  
Wassim Merchela

In this paper, we study the spectrum of non-self-adjoint convection-diffusion operator with a variable reaction term defined on an unbounded open set Ω of R^n. Our idea is to build a family of operators that have the same convection-diffusion-reaction formula, but which will be defined on bounded open sets 〖{Ω_η}〗_(η∈]0,1[) of R^n. Based on the relationships that link this family to Ω, we obtain relations between the spectrum and the pseudospectrum. We use the notion of the pseudospectrum to build relationships between convection-diffusion operator and its restrictions to bounded domains. Using these relationships we are able to find the spectrum of our operator in R^+. Also, the techniques developed to obtain the spectrum allow us to study the properties of the spectrum of this operator when we go to the limit as the reaction term tends to zero. Indeed, we show a spectral localization result for the same convection-diffusion-reaction operator when a perturbation is carried on the reaction term and no longer on the definition domain.


Sign in / Sign up

Export Citation Format

Share Document