teleseismic tomography
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Author(s):  
B.R. Julian ◽  
G.R. Foulger

ABSTRACT Seismic tomography methods that use waves originating outside the volume being studied are subject to bias caused by unknown structure outside this volume. The bias is of the same mathematical order and similar magnitude as the local-structure effects being studied; failure to account for it can significantly corrupt derived structural models. This bias can be eliminated by adding to the inverse problem three unknown parameters specifying the direction and time for each incident wave, a procedure analogous to solving for event locations in local-earthquake and whole-mantle tomography. The forward problem is particularly simple: The first-order change in the arrival time at an observation point resulting from a perturbation to the incident-wave direction and time equals the change in the time of the perturbed incident wave at the point where the unperturbed ray entered the study volume. This consequence of Fermat’s principle apparently has not previously been recognized. Published teleseismic tomography models probably contain significant artifacts and need to be recomputed using the more complete theory.


2021 ◽  
Vol 13 (13) ◽  
pp. 2449
Author(s):  
Huiyan Shi ◽  
Tonglin Li ◽  
Rui Sun ◽  
Gongbo Zhang ◽  
Rongzhe Zhang ◽  
...  

In this paper, we present a high resolution 3-D tomographic model of the upper mantle obtained from a large number of teleseismic travel time data from the ISC in the central Philippines. There are 2921 teleseismic events and 32,224 useful relative travel time residuals picked to compute the velocity structure in the upper mantle, which was recorded by 87 receivers and satisfied the requirements of teleseismic tomography. Crustal correction was conducted to these data before inversion. The fast-marching method (FMM) and a subspace method were adopted in the forward step and inversion step, respectively. The present tomographic model clearly images steeply subducting high velocity anomalies along the Manila trench in the South China Sea (SCS), which reveals a gradual changing of the subduction angle and a gradual shallowing of the subduction depth from the north to the south. It is speculated that the change in its subduction depth and angle indicates the cessation of the SCS spreading from the north to the south, which also implies that the northern part of the SCS opened earlier than the southern part. Subduction of the Philippine Sea (PS) plate is exhibited between 14° N and 9° N, with its subduction direction changing from westward to eastward near 13° N. In the range of 11° N–9° N, the subduction of the Sulu Sea (SS) lies on the west side of PS plate. It is notable that obvious high velocity anomalies are imaged in the mantle transition zone (MTZ) between 14° N and 9° N, which are identified as the proto-SCS (PSCS) slabs and paleo-Pacific (PP) plate. It extends the location of the paleo-suture of PSCS-PP eastward from Borneo to the Philippines, which should be considered in studying the mechanism of the SCS and the tectonic evolution in SE Asia.


2021 ◽  
Author(s):  
Jaroslava Plomerova ◽  
Helena Zlebcikova ◽  
Gyorgy Hetenyi ◽  
Ludek Vecsey ◽  
Vladislav Babuska ◽  
...  

<p>We present potential scenarios of the European and Adriatic plates’ collision that formed the Alps and the neighbouring mountain belts. Our results are based on teleseismic body-wave data from the AlpArray-EASI complementary experiment (2014-2015, Hetényi et al., Tectonophysics 2018) and the AlpArray Seismic Network (Hetényi et al., Surv. Geophys. 2018).  Tomography of seismic velocities in the upper mantle along a ca. 200 km broad and 540 km long north-south transect images steady southward thickening of the lithosphere beneath the Bohemian Massif  and northward dipping East-Alpine lithospheric keel. Thanks to the dense spacing of the AlpArray Seismic Network stations and high-quality data, the high-resolution tomography resolves for the first time two sub-parallel down-going high-velocity heterogeneities beneath the Eastern Alps, instead of a single, thick anomaly. The southern heterogeneity, which we relate to the subducted Adriatic plate, is more distinct than the northern one, which loses its connection with the shallow parts. Moreover, amplitudes and size of this heterogeneity decrease in cross-sections perpendicular to the strike of the Alps when shifting towards the Central Alps. The presented collision scenarios consider the smaller northern heterogeneity as (1) a remnant of a delaminated early phase subduction of the European plate with the reversed polarity relative to that in the Western Alps, (2) a piece of continental and oceanic lithosphere together, or, (3) a fragment of a quite extended lithosphere margin foundering in a preceding phase of the Adriatic subduction.</p>


2021 ◽  
Author(s):  
Stefan Mroczek ◽  
Frederik Tilmann ◽  
Jan Pleuger ◽  
Xiaohui Yuan ◽  
Ben Heit ◽  
...  

<p>The dense SWATH-D seismic network in the Central-Eastern Alps gives an unprecedented window into the collision of the Adriatic and European plates. Previous studies have suggested a Moho gap overlying a subduction polarity switch. This switch, from European subduction in the west to Adriatic subduction in the east, was suggested by teleseismic tomography where low velocity zones in the mantle were interpreted as two slabs with opposite subduction polarity. The TRANSALP profile at 12°E indeed showed a gently southward dipping European Moho truncated by a nearly flat Adriatic Moho in receiver function (RF) images, which clearly indicated southward directed subduction. In contrast, RF images derived from the EASI profile at 13.3°E were interpreted to show Moho topography consistent with underthrusting Adriatic Moho, which would support the hypothesized polarity switch, but the image is actually ambiguous. </p><p>We apply the receiver function method to stations in the dense SWATH-D broadband seismic network, covering approximately the area from 45-49°N and 10-15°E, supplemented by the AlpArray Seismic Network and the EASI data. We construct common conversion point stacks in order to pick the Moho conversion and its multiples.  The 15 km average station spacing has allowed us to fill in areas where previously the Moho was too weak to image. In this more comprehensive image, the asymmetry of the Moho in the TRANSALP profile can be traced to continue to at least the longitude of the EASI profile, suggesting continued southward-directed underthrusting of the European crust along the extent of the Eastern Alps, in conflict with the popular polarity switch hypothesis. At the eastern border of our study area we capture a sharp transition from European to extended Pannonian crust. Here the Adriatic Moho retreats and dips below the Pannonian Moho as it continues beneath the Dinarides.</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 463-481
Author(s):  
Mohammed Bello ◽  
David G. Cornwell ◽  
Nicholas Rawlinson ◽  
Anya M. Reading ◽  
Othaniel K. Likkason

Abstract. In an effort to improve our understanding of the seismic character of the crust beneath southeast Australia and how it relates to the tectonic evolution of the region, we analyse teleseismic earthquakes recorded by 24 temporary and 8 permanent broadband stations using the receiver function method. Due to the proximity of the temporary stations to Bass Strait, only 13 of these stations yielded usable receiver functions, whereas seven permanent stations produced receiver functions for subsequent analysis. Crustal thickness, bulk seismic velocity properties, and internal crustal structure of the southern Tasmanides – an assemblage of Palaeozoic accretionary orogens that occupy eastern Australia – are constrained by H–κ stacking and receiver function inversion, which point to the following: a ∼ 39.0 km thick crust; an intermediate–high Vp/Vs ratio (∼ 1.70–1.76), relative to ak135; and a broad (> 10 km) crust–mantle transition beneath the Lachlan Fold Belt. These results are interpreted to represent magmatic underplating of mafic materials at the base of the crust. a complex crustal structure beneath VanDieland, a putative Precambrian continental fragment embedded in the southernmost Tasmanides, that features strong variability in the crustal thickness (23–37 km) and Vp/Vs ratio (1.65–193), the latter of which likely represents compositional variability and the presence of melt. The complex origins of VanDieland, which comprises multiple continental ribbons, coupled with recent failed rifting and intraplate volcanism, likely contributes to these observations. stations located in the East Tasmania Terrane and eastern Bass Strait (ETT + EB) collectively indicate a crust of uniform thickness (31–32 km), which clearly distinguishes it from VanDieland to the west. Moho depths are also compared with the continent-wide AusMoho model in southeast Australia and are shown to be largely consistent, except in regions where AusMoho has few constraints (e.g. Flinders Island). A joint interpretation of the new results with ambient noise, teleseismic tomography, and teleseismic shear wave splitting anisotropy helps provide new insight into the way that the crust has been shaped by recent events, including failed rifting during the break-up of Australia and Antarctica and recent intraplate volcanism.


Author(s):  
Tong Bai ◽  
Clifford Thurber ◽  
Federica Lanza ◽  
Brad S. Singer ◽  
Ninfa Bennington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document