oblique convergence
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 49)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Author(s):  
John P. Craddock ◽  
David H. Malone

ABSTRACT Calcite twinning analysis across the central, unbuttressed portion of the Sevier thin-skin thrust belt, using Cambrian–Cretaceous limestones (n = 121) and synorogenic calcite veins (n = 31), records a complex strain history for the Sevier belt, Idaho and Wyoming, USA. Plots of fabric types (layer-parallel shortening, layer-normal shortening, etc.), shortening and extension axes for the Paris thrust (west, oldest, n = 11), Meade thrust (n = 46), Crawford thrust (n = 15), Absaroka thrust (n = 55), Darby thrust (n = 13), Lander Peak klippe (n = 5), eastern Prospect thrust (n = 6), and distal Cretaceous foreland (n = 3) reveal a W-E layer-parallel shortening strain only in the Prospect thrust and distal foreland. Calcite twinning strains in all western, internal thrust sheets are complex mixes of layer-parallel (LPS), layer-normal (LNS), and non-plane strains in limestones and synorogenic calcite veins. This complex strain fabric is best interpreted as the result of oblique convergence to the west and repeated eastward overthrusting by the Paris thrust.


Author(s):  
Chuanyong Wu ◽  
Guangxue Ren ◽  
Siyu Wang ◽  
Xue Yang ◽  
Gan Chen ◽  
...  

The deformation pattern and slip partitioning related to oblique underthrusting of the Tarim Basin in the eastern Tian Shan orogenic belt are not well understood because interior deformation images are lacking. The Baoertu fault is an E-W−striking, ∼350-km-long reactivated basement structure within the eastern Tian Shan. In this study, we quantify its late Quaternary activity based on interpretations of detailed high-resolution remote sensing images and field investigations. Three field observation sites along an ∼80-km-long fault segment indicate that the Baoertu fault is characterized by sinistral thrust faulting. Based on surveying of the displaced geomorphic surfaces with an unmanned drone and dating of the late Quaternary sediments using radiocarbon and optically stimulated luminescence (OSL) methods, we estimate a late Quaternary left-lateral, strike-slip rate of 1.87 ± 0.29 mm/yr and a N−S shortening rate of 0.26 ± 0.04 mm/yr for this fault. The lithospheric Baoertu fault acts as a decoupling zone and accommodates the left-lateral shearing caused by the oblique underthrusting of the Tarim Basin. In the eastern Tian Shan orogenic belt, the oblique convergence is partitioned into thrust faulting across the entire range and sinistral slip faulting on the high-dip basement structure within the orogen. This active faulting pattern in the eastern Tian Shan of sinistral shearing in the center and thrust faulting on both sides can be viewed as giant, crustal-scale positive flower structures.


2021 ◽  
Vol 21 (12) ◽  
pp. 3713-3730
Author(s):  
Enrico Baglione ◽  
Stefano Lorito ◽  
Alessio Piatanesi ◽  
Fabrizio Romano ◽  
Roberto Basili ◽  
...  

Abstract. We present a source solution for the tsunami generated by the Mw 6.6 earthquake that occurred on 2 May 2020, about 80 km offshore south of Crete, in the Cretan Passage, on the shallow portion of the Hellenic Arc subduction zone (HASZ). The tide gauges recorded this local tsunami on the southern coast of Crete and Kasos island. We used Crete tsunami observations to constrain the geometry and orientation of the causative fault, the rupture mechanism, and the slip amount. We first modelled an ensemble of synthetic tsunami waveforms at the tide gauge locations, produced for a range of earthquake parameter values as constrained by some of the available moment tensor solutions. We allow for both a splay and a back-thrust fault, corresponding to the two nodal planes of the moment tensor solution. We then measured the misfit between the synthetic and the Ierapetra observed marigram for each source parameter set. Our results identify the shallow, steeply dipping back-thrust fault as the one producing the lowest misfit to the tsunami data. However, a rupture on a lower angle fault, possibly a splay fault, with a sinistral component due to the oblique convergence on this segment of the HASZ, cannot be completely ruled out. This earthquake reminds us that the uncertainty regarding potential earthquake mechanisms at a specific location remains quite significant. In this case, for example, it is not possible to anticipate if the next event will be one occurring on the subduction interface, on a splay fault, or on a back-thrust, which seems the most likely for the event under investigation. This circumstance bears important consequences because back-thrust and splay faults might enhance the tsunamigenic potential with respect to the subduction interface due to their steeper dip. Then, these results are relevant for tsunami forecasting in the framework of both the long-term hazard assessment and the early warning systems.


2021 ◽  
pp. jgs2020-263
Author(s):  
B. Horton

Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, adjacent fold-thrust belt, and broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to nondepositional or erosional conditions in which the interruption of subsidence precludes net sediment accumulation. This study explores the genesis of long duration (>1–20 Myr) unconformities and condensed stratigraphic sections by considering modern and ancient examples from the Andes. These cases highlight potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (a) shortening-induced uplift in the frontal thrust belt and proximal foreland; (b) growth and advance of a broad, low-relief flexural forebulge; (c) uplift of intraforeland basement blocks; (d) tectonic quiescence with regional isostatic rebound; (e) cessation of thrust loading and flexural subsidence during oblique convergence; (f) diminished accommodation or sediment supply due to changes in sea level, climate, erosion, or transport; (g) basinwide uplift during flat-slab subduction; and (h) dynamic uplift associated with slab window formation, slab breakoff, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, paleoenvironmental conditions, and duration of unconformities and condensed sections.Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts


2021 ◽  
Author(s):  
Ryo Okuwaki ◽  
Wenyuan Fan

A devastating magnitude 7.2 earthquake struck Southern Haiti on 14 August 2021. The earthquake caused severe damages and over 2000 casualties. Resolving the earthquake rupture process can provide critical insights into hazard mitigation. Here we use integrated seismological analyses to obtain the rupture history of the 2021 earthquake. We find the earthquake first broke a blind thrust fault and then jumped to a disconnected strike-slip fault. Neither of the fault configurations aligns with the left-lateral tectonic boundary between the Caribbean and North American plates. The complex multi-fault rupture may result from the oblique plate convergence in the region that the initial thrust rupture is due to the boundary-normal compression and the following strike-slip faulting originates from the Gonâve microplate block movement, orienting towards the SW-NE direction. The complex rupture development of the earthquake suggests that the regional deformation is accommodated by a network of segmented faults with diverse faulting conditions.


2021 ◽  
Vol 91 (9) ◽  
pp. 1010-1023
Author(s):  
Cheng Cheng ◽  
Shuangying Li ◽  
Xiangyang Xie ◽  
Yanlin Lu ◽  
Arthur B. Busbey ◽  
...  

ABSTRACT The newly defined Carboniferous Meishan Group, along the northern margin of the Dabie orogenic belt, provides unique opportunities to document the poorly understood Paleozoic tectonic evolution of the Dabie orogenic belt and the Paleozoic convergence between the North and South China blocks. We apply sandstone petrology, geochemistry, and U-Pb detrital-zircon geochronology to constrain the provenance of the Carboniferous Meishan Group and to document its potential tectonic significance. We conclude that the Meishan Group received most sediment directly from early Paleozoic continental island arc rocks that are currently missing in the Dabie orogenic belt, with minor contributions from middle Neoproterozoic magmatic rocks of the South China Block and recycling of Archean to Proterozoic basement rocks of both the North and South China blocks. Compilation and comparison of detrital zircons and geochemistry data of the Silurian–Devonian and Carboniferous units suggests that all of them share similar source areas, but that individual contributions from each source were different. These results support the hypothesis that the Dabie orogenic belt developed a similar Paleozoic accretionary system, and shares a similar tectonic history, with the Qinling orogenic belt. These provenance patterns can be explained by a model of oblique convergence between the North and South China blocks during the Paleozoic. The South China Block was obliquely subducted beneath the North China Block with its opening to the east, forming an eastward-widening sedimentary basin. As a result, the eastern part of the basin received more sediment from the northern passive margin of the South China Block, while the western part of the basin received more material from the southern active margin of the North China Block.


Author(s):  
Romain HEMELSDAEL ◽  
Michel SERANNE ◽  
Eglantine HUSSON ◽  
Gregory BALLAS

The “Wilson cycle” involves reactivation of rifting structures during convergence-driven inversion, then thrust reactivation during post-orogenic dismantling and extension. Classic documented examples of the Wilson cycle, such as in the pyrenean orogen, are based on sequential sections normal to the orogen. However oblique convergence/divergence that involves strain partitioning, and arcuate segments of the orogen prevent simple tectonic restorations. Languedoc region (southern France) provides a case study of a complex poly-phased deformation involving a range of reactivated structures and cross-cutting relationships, acquired in response to different stress-regimes of varying orientations. We analyse and correlate the onshore-offshore structures of the Languedoc, based on reassessment of existing and newly acquired subsurface data. New results in the previously poorly documented coastal area point to the existence of unrecognized major structures that improves onshore-offshore correlations. Our results show i) the part played by the Mesozoic (early Jurassic, then mid-Cretaceous) extensional phases in the development and the localization of pyrenean-related contractional structures; ii) the control of the later Oligocene rifting of the Gulf of Lion. Restoration of the Pyrenean shortening and Oligocene rifting, constructed along sections of relevant orientation (i.e. close to perpendicular to each other) indicate minimum shortening of 26 km and extension of 14km, respectively, in the Languedoc foreland. Integration of the Pyrenean structural framework of Languedoc reveals a wide, NE-trending transfer zone linking the Iberian Pyrenees to Provence.


2021 ◽  
Author(s):  
Enrico Baglione ◽  
Stefano Lorito ◽  
Alessio Piatanesi ◽  
Fabrizio Romano ◽  
Roberto Basili ◽  
...  

Abstract. We present a source solution for the tsunami generated by the Mw 6.6 earthquake that occurred on May 2, 2020, about 807thinsp;km offshore south of Crete, in the Cretan Passage, on the shallow portion of the Hellenic Arc Subduction Zone (HASZ). The tide-gauges recorded this local tsunami on the southern coast of Crete island and Kasos island. We used these tsunami observations to constrain the geometry and orientation of the causative fault, the rupture mechanism and the slip amount. We first modelled an ensemble of synthetic tsunami waveforms at the tide-gauge locations, produced for a range of earthquake parameter values as constrained by some of the available moment tensor solutions. We allow for both a splay and a back-thrust fault, corresponding to the two nodal planes of the moment tensor solution. We then measured the misfit between the synthetic and the observed marigrams for each source parameter set. Our results identify the shallow steeply-dipping back-thrust fault as the one producing the lowest misfit to the tsunami data. However, a rupture on a lower angle fault, possibly a splay fault, with a sinistral component due to the oblique convergence on this segment of the HASZ, cannot be completely ruled out. This earthquake reminds us that the uncertainty regarding potential earthquake mechanisms at a specific location remains quite significant. In this case, for example, it is not possible to anticipate if the next event will be one occurring on the subduction interface, on a splay fault, or on a back-thrust which seems the most likely for the event under investigation. This circumstance bears important consequences because back-thrust and splay faults might enhance the tsunamigenic potential with respect to the subduction interface due to their steeper dip. Then, these results are relevant for tsunami forecasting both in the framework of the long-term hazard assessment and of the early warning systems.


Sign in / Sign up

Export Citation Format

Share Document