invasion genetics
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Michael A McCartney ◽  
Benjamin Auch ◽  
Thomas Kono ◽  
Sophie Mallez ◽  
Ying Zhang ◽  
...  

Abstract The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate a high-quality chromosome-scale genome assembly. Through comparative analysis and transcriptomics experiments we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact Steamer-Like Elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.


Author(s):  
Nikolay Alabi ◽  
Yihan Wu ◽  
Oliver Bossdorf ◽  
Loren H Rieseberg ◽  
Robert I Colautti

Abstract The emerging field of invasion genetics examines the genetic causes and consequences of biological invasions, but few study systems are available that integrate deep ecological knowledge with genomic tools. Here we report on the de novo assembly and annotation of a genome for the biennial herb Alliaria petiolata (M. Bieb.) Cavara & Grande (Brassicaceae), which is widespread in Eurasia and invasive across much of temperate North America. Our goal was to sequence and annotate a genome to complement resources available from hundreds of published ecological studies, a global field survey, and hundreds of genetic lines maintained in Germany and Canada. We sequenced a genotype (EFCC3-3-20) collected from the native range near Venice, Italy and sequenced paired-end and mate pair libraries at ∼70 × coverage. A de novo assembly resulted in a highly continuous draft genome (N50 = 121 Mb; L50 = 2) with 99.7% of the 1.1 Gb genome mapping to scaffolds of at least 50 Kb in length. A total of 64,770 predicted genes in the annotated genome include 99% of plant BUSCO genes and 98% of transcriptome reads. Consistent with previous reports of (auto)hexaploidy in western Europe, we found that almost one third of BUSCO genes (390/1440) mapped to two or more scaffolds despite < 2% genome-wide average heterozygosity. The continuity and gene space quality of our draft assembly will enable molecular and functional genomic studies of A. petiolata to address questions relevant to invasion genetics and conservation strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fargam Neinavaie ◽  
Arig Ibrahim-Hashim ◽  
Andrew M. Kramer ◽  
Joel S. Brown ◽  
Christina L. Richards

The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.


2021 ◽  
Author(s):  
Nikolay Alabi ◽  
Yihan Wu ◽  
Oliver Bossdorf ◽  
Loren H. Rieseberg ◽  
Robert I. Colautti

AbstractThe emerging field of invasion genetics examines the genetic causes and consequences of biological invasions, but few study systems are available that integrate deep ecological knowledge with genomic tools. Here we report on the de novo assembly and annotation of a genome for the biennial herb Alliaria petiolata (M. Bieb.) Cavara & Grande (Brassicaceae), which is widespread in Eurasia and invasive across much of temperate North America. Our goal was to sequence and annotate a genome to complement resources available from hundreds of published ecological studies, a global field survey, and hundreds of genetic lines maintained in Germany and Canada. We sequenced a genotype (EFCC-3-20) collected from the native range near Venice, Italy and sequenced paired-end and mate pair libraries at ~70× coverage. A de novo assembly resulted in a highly continuous draft genome (N50 = 121Mb; L50 = 2) with 99.7% of the 1.1Gb genome mapping to contigs of at least 50Kb in length. A total of 64,770 predicted genes in the annotated genome include 99% of plant BUSCO genes and 98% of transcriptome reads. Consistent with previous reports of (auto)hexaploidy in western Europe Almost, we found that almost one third of BUSCO genes (390/1440) mapped to two or more scaffolds despite a genome-wide average of < 2% heterozygosity. The continuity and gene space quality of our draft genome assembly will enable genomic studies of A. petiolata to address questions relevant to invasion genetics and conservation efforts.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tetyana Tsykun ◽  
Marion Javal ◽  
Doris Hölling ◽  
Géraldine Roux ◽  
Simone Prospero

AbstractThe xylophagous cerambycid Anoplophora glabripennis, the Asian long-horned beetle (ALB), is highly polyphagous and can colonize a wide range of broadleaved host trees causing significant economic damage. For this reason, it is considered a quarantine pest in Europe and North America. Although the global spread of ALB has been depicted recently, no comprehensive studies exist on the genetic pattern of populations’ establishment and dynamics at fine-scale (i.e. within invasive outbreaks), before eradication measures are applied. This information may, however, be particularly important for an efficient management and control of invasive pests. Here, we characterized population genetic diversity and patterns of spread of ALB within and among the four outbreaks detected in Switzerland between 2011 and 2015. For this, we genotyped 223 specimens at 15 nuclear microsatellite loci and conducted specific population-based analyses. Our study shows: (1) At least three independent introductions and a, human-mediated, secondary dispersal event leading to the four outbreaks in the country; (2) An overall low intra-population genetic diversity in the viable and several years active invasive populations; (3) A colonization of single trees by homogeneous ALB genotypes; And (4) an establishment of populations several generations prior to its official discovery.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marieke E. Feis ◽  
M. Anouk Goedknegt ◽  
Isabelle Arzul ◽  
Anne Chenuil ◽  
Onno den Boon ◽  
...  

2019 ◽  
Author(s):  
Xavier Turon ◽  
Adrià Antich ◽  
Creu Palacín ◽  
Kim Præbel ◽  
Owen Simon Wangensteen

AbstractMetabarcoding is by now a well-established method for biodiversity assessment in terrestrial, freshwater and marine environments. Metabarcoding datasets are usually used for α- and β-diversity estimates, that is, interspecies (or inter-MOTU) patterns. However, the use of hypervariable metabarcoding markers may provide an enormous amount of intraspecies (intra-MOTU) information - mostly untapped so far. The use of cytochrome oxidase (COI) amplicons is gaining momentum in metabarcoding studies targeting eukaryote richness. COI has been for a long time the marker of choice in population genetics and phylogeographic studies. Therefore, COI metabarcoding datasets may be used to study intraspecies patterns and phylogeographic features for hundreds of species simultaneously, opening a new field which we suggest to name metaphylogeography. The main challenge for the implementation of this approach is the separation of erroneous sequences from true intra-MOTU variation. Here, we develop a cleaning protocol based on changes in entropy of the different codon positions of the COI sequence, together with co-occurrence patterns of sequences. Using a dataset of community DNA from several benthic littoral communities in the Mediterranean and Atlantic seas, we first tested by simulation on a subset of sequences a two-step cleaning approach consisting of a denoising step followed by a minimal abundance filtering. The procedure was then applied to the whole dataset. We obtained a total of 563 MOTUs that were usable for phylogeographic inference. We used semiquantitative rank data instead of read abundances to perform AMOVAs and haplotype networks. Genetic variability was mainly concentrated within samples, but with an important between-seas component as well. There were inter-group differences in the amount of variability between and within communities in each sea. For two species the results could be compared with traditional Sanger sequence data available for the same zones, giving similar patterns. Our study shows that metabarcoding data can be used to infer intra- and interpopulation genetic variability of many species at a time, providing a new method with great potential for basic biogeography, connectivity and dispersal studies, and for the more applied fields of conservation genetics, invasion genetics, and design of protected areas.


Sign in / Sign up

Export Citation Format

Share Document