cell death pathway
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 153)

H-INDEX

69
(FIVE YEARS 7)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Cliff J. Luke ◽  
Stephanie Markovina ◽  
Misty Good ◽  
Ira E. Wight ◽  
Brian J. Thomas ◽  
...  

AbstractLysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Qing Nie ◽  
Yue Hu ◽  
Xiao Yu ◽  
Xiao Li ◽  
Xuedong Fang

AbstractAt present, more than one cell death pathways have been found, one of which is ferroptosis. Ferroptosis was discovered in 2012 and described as an iron-dependent and lipid peroxidation-driven regulated cell death pathway. In the past few years, ferroptosis has been shown to induce tumor cell death, providing new ideas for tumor treatment. In this article, we summarize the latest advances in ferroptosis-induced tumor therapy at the intersection of tumor biology, molecular biology, redox biology, and materials chemistry. First, we state the characteristics of ferroptosis in cells, then introduce the key molecular mechanism of ferroptosis, and describes the relationship between ferroptosis and oxidative stress signaling pathways. Finally, we focused on several types of ferroptosis inducers discovered by scholars, and the application of ferroptosis in systemic chemotherapy, radiotherapy, immunotherapy and nanomedicine, in the hope that ferroptosis can exert its potential in the treatment of tumors.


Author(s):  
Anastasia L Berg ◽  
Ashley Rowson-Hodel ◽  
Michelle Hu ◽  
Michael Keeling ◽  
Hao Wu ◽  
...  

The resistance of cancer cell subpopulations, including cancer stem cell (CSC) populations, to apoptosis-inducing chemotherapeutic agents is a key barrier to improved outcomes for cancer patients. The cationic amphiphilic drug hexamethylene amiloride (HMA) has been previously demonstrated to efficiently kill bulk breast cancer cells independent of tumor subtype or species, but acts poorly toward non-transformed cells derived from multiple tissues. Here we demonstrate that HMA is similarly cytotoxic toward breast CSC-related subpopulations that are resistant to conventional chemotherapeutic agents, but poorly cytotoxic toward normal mammary stem cells. HMA inhibits the sphere-forming capacity of FACS-sorted human and mouse mammary CSC-related cells in vitro, specifically kills tumor but not normal mammary organoids ex vivo, and inhibits metastatic outgrowth in vivo, consistent with CSC suppression. Moreover, HMA inhibits viability and sphere formation by lung, colon, pancreatic, brain, liver, prostate and bladder tumor cell lines, suggesting that its effects may be applicable to multiple malignancies. Mechanistically, HMA elicits the permeabilization of the limiting lysosomal membrane, a hallmark feature of the lysosome-dependent cell death pathway. Our observations expose a key vulnerability intrinsic to cancer stem cells, and point to novel strategies for the exploitation of cationic amphiphilic drugs in cancer treatment.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Mohammad E. Khamseh ◽  
Alireza Sheikhi ◽  
Zahra Shahsavari ◽  
Mohammad Ghorbani ◽  
Hamideh Akbari ◽  
...  

Abstract Background Pituitary adenomas impose a burden of morbidity on patients and characterizing the molecular mechanisms underlying its pathogenesis received remarkable attention. Despite the appealing role of necroptosis as an alternative cell death pathway in cancer pathogenesis, its relevance to pituitary adenoma pathogenesis has yet to be determined that is perused in the current study. Methods The total number of 109 specimens including pituitary adenomas and cadaveric healthy pituitary tissues were enrolled in the current study. Tumor and healthy pituitary tissues were subjected to RNA extraction and gene analysis using Real-Time PCR. The expression levels of necroptosis markers (RIP1K, RIP3K and, MLKL) and their association with the patient’s demographic features were evaluated, also the protein level of MLKL was assessed using immunohistochemistry in tissues. Results Based on our data, the remarkable reduction in RIP3K and MLKL expression were detected in nonfunctional and GH-secreting pituitary tumors compared to pituitary normal tissues. Invasive tumors revealed lower expression of RIP3K and MLKL compared to non-invasive tumors, also the attenuated level of MLKL was associated with the tumor size in invasive NFPA. The simultaneous down-regulation of MLKL protein in pituitary adenoma tissues was observed which was in line with its gene expression. While, RIP1K over-expressed significantly in both types of pituitary tumors which showed no significant correlation with patient’s age, gender and tumor size in GHPPA and NFPA group. Notably, MLKL and RIP3K gene expression was significantly correlated in the GHPPA group. Conclusions According to our data, the reduced expression of necroptosis mediators (RIP3K, MLKL) in pituitary adenoma reinforces the hypothesis that the necroptosis pathway can be effective in regulating the proliferation and growth of pituitary tumor cells and tumor recurrence.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqi Li ◽  
Junting Huang ◽  
Ji Chen ◽  
Yating Zhan ◽  
Rongrong Zhang ◽  
...  

Bladder Urothelial Carcinoma (BLCA) is the major subtype of bladder cancer, and the prognosis prediction of BLCA is difficult. Ferroptosis is a newly discovered iron-dependent cell death pathway. However, the clinical value of ferroptosis-related genes (FRGs) on the prediction of BLCA prognosis is still uncertain. In this study, we aimed to construct a novel prognostic signature to improve the prognosis prediction of advanced BLCA based on FRGs. In the TCGA cohort, we identified 23 differentially expressed genes (DEGs) associated with overall survival (OS) via univariate Cox analysis (all P < 0.05). 8 optimal DEGs were finally screened to generate the prognostic risk signature through LASSO regression analysis. Patients were divided into two risk groups based on the median risk score. Survival analyses revealed that the OS rate in the high-risk group was significantly lower than that in the low-risk group. Moreover, the risk score was determined as an independent predictor of OS by the multivariate Cox regression analysis (Hazard ratio > 1, 95% CI = 1.724-2.943, P < 0.05). Many potential ferroptosis-related pathways were identified in the enrichment analysis in BLCA. With the aid of an external FAHWMU cohort (n = 180), the clinical predication value of the signature was further verified. In conclusion, the prognosis of advanced BLCA could be accurately predicted by this novel FRG-signature.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Venkat Sundar Gadepalli ◽  
Hangil Kim ◽  
Yueze Liu ◽  
Tao Han ◽  
Lijun Cheng

AbstractLots of cell death initiator and effector molecules, signalling pathways and subcellular sites have been identified as key mediators in both cell death processes in cancer. The XDeathDB visualization platform provides a comprehensive cell death and their crosstalk resource for deciphering the signaling network organization of interactions among different cell death modes associated with 1461 cancer types and COVID-19, with an aim to understand the molecular mechanisms of physiological cell death in disease and facilitate systems-oriented novel drug discovery in inducing cell deaths properly. Apoptosis, autosis, efferocytosis, ferroptosis, immunogenic cell death, intrinsic apoptosis, lysosomal cell death, mitotic cell death, mitochondrial permeability transition, necroptosis, parthanatos, and pyroptosis related to 12 cell deaths and their crosstalk can be observed systematically by the platform. Big data for cell death gene-disease associations, gene-cell death pathway associations, pathway-cell death mode associations, and cell death-cell death associations is collected by literature review articles and public database from iRefIndex, STRING, BioGRID, Reactom, Pathway’s commons, DisGeNET, DrugBank, and Therapeutic Target Database (TTD). An interactive webtool, XDeathDB, is built by web applications with R-Shiny, JavaScript (JS) and Shiny Server Iso. With this platform, users can search specific interactions from vast interdependent networks that occur in the realm of cell death. A multilayer spectral graph clustering method that performs convex layer aggregation to identify crosstalk function among cell death modes for a specific cancer. 147 hallmark genes of cell death could be observed in detail in these networks. These potential druggable targets are displayed systematically and tailoring networks to visualize specified relations is available to fulfil user-specific needs. Users can access XDeathDB for free at https://pcm2019.shinyapps.io/XDeathDB/.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Anabella Aguilera ◽  
Federico Berdun ◽  
Carlos Bartoli ◽  
Charlotte Steelheart ◽  
Matías Alegre ◽  
...  

Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5811
Author(s):  
Hardika Dhir ◽  
Monica Choudhury ◽  
Ketki Patil ◽  
Candice Cheung ◽  
Adriana Bodlak ◽  
...  

Deregulation of signaling pathways due to mutations sets the cell on a path to neoplasia. Therefore, recent reports of increased mutations observed in esophageal tissue reflects the enhanced risk of tumor formation. In fact, adenocarcinoma of the esophagus has been on the rise lately. Increase in mortality due to a paucity of efficacious drugs for this cancer prompted us to discover molecular signatures to combat this malady. To this end, we chose resveratrol—a polyphenol with anticancer property—and studied its impact on three esophageal adenocarcinoma cell lines (OE33, OE19 and FLO-1) by multilevel profiling. Here, we show the impact of resveratrol on the viability of the three adenocarcinoma esophageal cell systems studied, at the cellular level. Furthermore, an analysis at the molecular level revealed that the action was through the programmed cell death pathway, resulting in an increase in apoptotic and caspase-positive cells. The impact on reactive oxygen species (ROS) and a decrease in Bcl2 levels were also observed. Moreover, proteomic profiling highlighted pivotal differentially regulated signaling molecules. The phenotypic effect observed in resveratrol-treated esophageal cells could be due to the stoichiometry per se of the fold changes observed in entities of key signaling pathways. Notably, the downregulation of Ku80 and other pivotal entities by resveratrol could be harnessed for chemo-radiation therapy to prevent DNA break repair after radiation therapy. Additionally, multilevel profiling has shed light on molecular and immune-modulatory signatures with implications for discovering novel treatments, including chemo-immunotherapy, for esophageal adenocarcinomas which are known to be aggressive cancers.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1702
Author(s):  
Taiga Seki ◽  
Yui Shimizu ◽  
Kyota Ishii ◽  
Yuzuki Takahama ◽  
Kazunori Kato ◽  
...  

Background: The occurrence of androgen-dependent prostate cancer mainly depends on prostate cancer stem cells. To reduce the risk of androgen-dependent prostate cancer, the direct elimination of prostate cancer stem cells is important, but an elimination strategy has not yet been established. A previous study showed that natural killer (NK) cells can preferentially target cancer stem cells in several solid tumors except prostate cancer. In this context, this study was undertaken to investigate if NK cells can selectively attack androgen-dependent prostate cancer stem cells. Methods: Prostate cancer stem-like cells were separated from an androgen-dependent prostate cancer cell line (LNCaP) using a three-dimensional culture system. LNCaP stem-like cells or LNCaP cells were co-cultured with human NK cells (KHYG-1) for 24–72 h, and cell viability was determined using the WST-8 method. The expression of each protein in the cell membrane was evaluated through FACS analysis, and mRNA levels were determined using real-time PCR. Results: KHYG-1 cells had more potent cytotoxicity against LNCaP stem-like cells than LNCaP cells, and the potency of the cytotoxicity was strongly related to the TRAIL/DR5 cell death pathway. Conclusion: NK cells can preferentially target prostate cancer stem-like cells via the TRAIL/DR5 pathway.


2021 ◽  
Author(s):  
Akshay G Patel ◽  
Sarah Moxham ◽  
Anil K Bamezai

Engaging the Ly-6A protein, an inhibitory signaling protein, on CD4+ T cell lines triggers apoptosis. Signaling through Ly-6A activates cell-intrinsic apoptotic cell death pathway as indicated by release of cytochrome C, activation of caspase 3 and 9. In addition Ly-6A induces cytokine production and growth inhibition. The mechanism underlying simultaneous distinct cellular responses has remained unknown. To examine the relatedness of distinct responses generated by engaging Ly-6A, we have quantified the secretion of TNFα, TGFβ and a related protein GDF10, the three pro-apoptotic, growth inhibitory and tumor suppressive cytokines. While low levels of TGFβ and GDF10 were detected after engaging Ly-6A, the production of TNF-α was elevated in cell cultures stimulated the Ly-6A protein. Blocking the biological activity of TNFα resulted in reduced apoptosis induced by engaging Ly-6A. In contrast, growth inhibition/apoptosis in response to antigen receptor complex stimulation was not observed. Engaging the antigen receptor through activating the epsilon (ϵ) chain of CD3 generated high levels of TGF-β and GDF10 while decreasing TNFα. These results suggest that the TNF-α cytokine contributes to the Ly-6A-induced growth inhibitory and pro-apoptotic response in CD4+ T cells and provides mechanistic explanation of the observed biologically distinct responses initiated after engaging Ly-6A protein. These findings aid in understanding the inhibitory signaling initiated by Ly-6A protein, especially in the context of its potential immune checkpoint inhibitory role in T cells.


Sign in / Sign up

Export Citation Format

Share Document