effective roughness
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3202
Author(s):  
Sebastián Cedillo ◽  
Esteban Sánchez-Cordero ◽  
Luis Timbe ◽  
Esteban Samaniego ◽  
Andrés Alvarado

Due to the presence of boulders and different morphologies, mountain rivers contain various resistance sources. To correctly simulate river flow using 1-D hydrodynamic models, an accurate estimation of the flow resistance is required. In this article, a comparison between the physical roughness parameter (PRP) and effective roughness coefficient (ERC) is presented for three of the most typical morphological configurations in mountain rivers: cascade, step-pool, and plane-bed. The PRP and its variation were obtained through multiple measurements of field variables and an uncertainty analysis, while the ERC range was derived with a GLUE procedure implemented in HEC-RAS, a 1-D hydrodynamic model. In the GLUE experiments, two modes of the Representative Friction Slope Method (RFSM) between two cross-sections were tested, including the variation in the roughness parameter. The results revealed that the RFSM effect was limited to low flows in cascade and step-pool. Moreover, when HEC-RAS selected the RSFM, only acceptable results were presented for plane-bed. The difference between ERC and PRP depended on the flow magnitude and the morphology, and as shown in this study, when the flow increased, the ERC and PRP ranges approached each other and even overlapped in cascade and step-pool. This research aimed to improve the roughness value selection process in a 1-D model given the importance of this parameter in the predictability of the results. In addition, a comparison was presented between the results obtained with the numerical model and the values calculated with the field measurements


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5443
Author(s):  
Jaeduk Han ◽  
Haegeun Lee ◽  
Moon Gi Kang

An imaging system has natural statistics that reflect its intrinsic characteristics. For example, the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and their signal processors are specialized according to the optical and sensor systems. Thermal images, also known as long wavelength infrared (LWIR) images, suffer from distinct degradations of LWIR sensors and residual nonuniformity (RNU). However, despite the existence of various studies on the statistics of thermal images, thermal image processing has seldom attempted to incorporate natural statistics. In this study, natural statistics of thermal imaging sensors are derived, and an optimization method for restoring thermal images is proposed. To verify our hypothesis about the thermal images, high-frequency components of thermal images from various datasets are analyzed with various measures (correlation coefficient, histogram intersection, chi-squared test, Bhattacharyya distance, and Kullback–Leibler divergence), and generalized properties are derived. Furthermore, cost functions accommodating the validated natural statistics are designed and minimized by a pixel-wise optimization method. The proposed algorithm has a specialized structure for thermal images and outperforms the conventional methods. Several image quality assessments are employed for quantitatively demonstrating the performance of the proposed method. Experiments with synthesized images and real-world images are conducted, and the results are quantified by reference image assessments (peak signal-to-noise ratio and structural similarity index measure) and no-reference image assessments (Roughness (Ro) and Effective Roughness (ERo) indices).


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1058
Author(s):  
Juan M. González-Leal ◽  
Enrique Gallero ◽  
Eduardo Blanco ◽  
Milagrosa Ramírez del Solar ◽  
Andrés Nuñez ◽  
...  

This article reports on the relation between the surface topography and the optical reflectance, both total and diffuse, of different samples of AISI 430 ferritic stainless steel. Gaussian filters with different cutoff wavelengths were applied to the height maps of the surface topography of the samples, to separate the different scales of surface roughness involved in optical scattering in the visible range of the spectrum. Significant anisotropy, related to the rolling process, was found in the topography. An effective roughness slope parameter was defined from the dependence of the ratio between the root mean square height and the autocorrelation length on the cutoff wavelength. This roughness slope demonstrated an exceptionally good linear relationship with CIE 1931 luminance, which was calculated from the diffuse reflection spectra. The color uniformity of the samples was analyzed based on their CIE L*a*b* coordinates under daylight and LED illumination. The results confirmed the strong influence of manufacturing process on the surface characteristics of AISI 430 ferritic stainless steel sheet products with a bright finish.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuansheng Cheng ◽  
Xiaoqin Li ◽  
Xiaolan Man ◽  
Feifan Fan ◽  
Zhixiong Li

When agricultural vehicles operate in the field, the soft road excitation makes it difficult to measure the vehicle vibration. A camera-accelerator system can solve this issue by utilizing computer vision information; however, the relationship between the field road surface and the vehicle vibration response remains an unsolved problem. This study aims to investigate the correlation of the soft road excitation of different long-wave surfaces with the vehicle vibration response. Vibration equation between the vehicle and soft road surface system was established to produce an effective roughness model of the field soft road surface. In order to simulate the vehicle vibration state under different long-wave road surfaces, the soil rectangular pits with 21 kinds of different spans and depths were applied to the road surfaces, and a tractor vibration test system was built for vibration test. The frequency spectrum analysis was performed for the vibration response and the roughness signals of the road surfaces. The results showed that coefficient (R2) of frequency correlation between the roughness excitation and the original unevenness at the excitation point at the rear end of the rectangular soil pit fell within 0.9641∼0.9969. The main frequency band of the vibration response fell within 0∼3 Hz, and the phenomenon of quadruple frequency existed. The correlation of roughness excitation with quadruple frequency fell within 0.992165∼1. The primary excitation points were located at the rear end of the rectangular soil pit. In addition, it also indicated that when the vehicle was driven without autonomous power, the vehicle vibration frequency mainly depended on the excitation frequency of the field road surface and the frequency at the maximum vehicle vibration intensity was 2 or 3 times of that at the maximum field soft road excitation. These findings may provide a reference for optimal design of vibration reduction and control for agricultural vehicles.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hongjun Wang ◽  
Xueliang Zhu ◽  
Bingcai Liu ◽  
Ailing Tian

To solve the coherent noise problem of an interference image, the method of a rotating diffuser was adopted to change the coherence of a beam to reduce the noise of the interference system. The relationship between the speed of the diffuser and the signal-to-noise ratio (SNR) of the fringe contrast system was simulated to obtain the diffuser control parameters needed for the best interference fringe state. The fringe contrast of each image and the SNR of the system were analyzed. The results showed that the increased speed of the diffuser reduced the contrast of the interference image to a certain extent, but the increased speed also effectively improved the SNR and facilitated the subsequent interference image processing. Due to the coherent noise in the interferometric system, the method of the rotated diffuser reduced the coherence of the light beam to suppress the noise of the interference image. By analyzing the coherent noise reduction characteristics of the rotated diffuser with different surface roughnesses, the relationship between the surface roughness and the noise contrast for different rotation speeds was simulated, and the effective roughness range with the noise reduction effect was selected. A noise reduction system was built based on Fizeau interference, and the noise contrast of the interference image was collected and calculated. The effective range of σh/λ was 0.2–0.5 when the rotation speed was 10 r/s, while the effective range of σh/λ was 0.4–0.6 when the rotation speed was 100 r/s. The experimental results showed that the surface roughness and wavelength ratio σh/λ of the rotated diffuser increased when the noise contrast tended toward 1, but the effective range of the surface roughness decreased with the increase of the rotational speed of the diffuser.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 135
Author(s):  
Min Zhang ◽  
Fengkai Lang ◽  
Nanshan Zheng

The objective of this paper is to propose a combined approach for the high-precision mapping of soil moisture during the wheat growth cycle based on synthetic aperture radar (SAR) (Radarsat-2) and optical satellite data (Landsat-8). For this purpose, the influence of vegetation was removed from the total backscatter by using the modified water cloud model (MWCM), which takes the vegetation fraction (fveg) into account. The VV/VH polarization radar backscattering coefficients database was established by a numerical simulation based on the advanced integrated equation model (AIEM) and the cross-polarized ratio of the Oh model. Then the empirical relationship between the bare soil backscattering coefficient and both the soil moisture and the surface roughness was developed by regression analysis. The surface roughness in this paper was described by using the effective roughness parameter and the combined roughness form. The experimental results revealed that using effective roughness as the model input instead of in-situ measured roughness can obtain soil moisture with high accuracy and effectively avoid the uncertainty of roughness measurement. The accuracy of soil moisture inversion could be improved by introducing vegetation fraction on the basis of the water cloud model (WCM). There was a good correlation between the estimated soil moisture and the observed values, with a root mean square error (RMSE) of about 4.14% and the coefficient of determination (R2) about 0.7390.


2020 ◽  
Author(s):  
Huseyin Onur

Abstract The quest to understand turbulent flows continues to be as important as it was during the previous century. Present work shows that if a 'laminar' solution to Navier -Stokes equations can be found then skin friction and heat transfer coefficients for the turbulent case can readily be obtained. There is no need for Reynolds averaging and turbulence modelling. This can be done by defining a turbulence scaling factor which converts 'laminar' diffusivities to turbulent diffusivities. Using turbulent diffusivities in the laminar skin friction coefficient formula and laminar heat transfer coefficient formula gives the corresponding turbulent formula. Five different test cases with credible experimental measurements have been used to show the success of the present approach. This work also gives the lengths of internally generated turbulent eddies and roughness created turbulent eddies. If main flow mixes the turbulent eddies , smaller eddies are merged by the larger ones and this is the suggested model for roughness effects which dominates at large Reynolds numbers. A single effective roughness which determines the friction factor has also been obtained and the fractal dimension of turbulence is given as power to Reynolds number. This fractal dimension is in accord with literature for turbulent/non-turbulent interfaces.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3536 ◽  
Author(s):  
António Araújo

Due to the poor thermal characteristics of the air, the absorber roughness of solar air collectors is commonly artificially increased in order to enhance the heat transfer to the air stream. However, this is also accompanied by an undesirable increase in the pumping power due to increased friction losses. As a result, several authors have experimentally investigated several ways of maximizing the heat transfer while minimizing the friction losses of different absorbers, resulting in the development of semi-empirical functions relating the Nusselt number (a measure of heat transfer) and the friction factor (a measure of friction losses) to the Reynolds number and the roughness parameters considered for each absorber. The present paper reviews, considering the publications from the last ten years, these semi-empirical functions. Moreover, the optimum roughness parameters and operating conditions of the absorbers were estimated by finding the maximum values of two performance parameters (the thermo-hydraulic efficiency and effectiveness), calculated using the semi-empirical functions, in order to classify the absorbers in terms of their energy characteristics. This approach proves to be a rather effective way of optimizing the roughness characteristics of solar air collector absorbers. It is also concluded that, considering the range of absorbers analyzed here, generally, multiple V-shaped ribs with gaps provide the most effective roughness geometry.


2020 ◽  
Vol 17 ◽  
pp. 53-61
Author(s):  
Andrey Sogachev ◽  
Dalibor Cavar ◽  
Mark Kelly ◽  
Ebba Dellwik ◽  
Tobias Klaas ◽  
...  

Abstract. Parameterizing the effect of vertically-distributed vegetation through an effective roughness (z0,eff) – whereby momentum loss through a three-dimensional foliage volume is represented as momentum loss over an area at one vertical level – can facilitate the use of forest data in flow models, to any level of detail, and simultaneously reduce computational cost. Results of numerical experiments and comparison with observations show that a modelling approach based on z0,eff can estimate wind speed and turbulence levels over forested areas, at heights of interest for wind energy applications (∼60 m and higher), but only above flat terrain. Caution must be exercised in the application of such a model to zones of forest edges. Advanced flow models capable of incorporating local (distributed) drag forces are recommended for complex terrain covered by forest.


Sign in / Sign up

Export Citation Format

Share Document