cnidium officinale
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7034
Author(s):  
Hyoung-Geun Kim ◽  
Seon Min Oh ◽  
Na Woo Kim ◽  
Ji Heon Shim ◽  
Youn Hee Nam ◽  
...  

The extract from Cnidium officinale rhizomes was shown in a prior experiment to markedly recover otic hair cells in zebrafish damaged by neomycin. The current study was brought about to identify the principal metabolite. Column chromatography using octadecyl SiO2 and SiO2 was performed to isolate the major metabolites from the active fraction. The chemical structures were resolved on the basis of spectroscopic data, including NMR, IR, MS, and circular dichroism (CD) data. The isolated phthalide glycosides were assessed for their recovery effect on damaged otic hair cells in neomycin-treated zebrafish. Three new phthalide glycosides were isolated, and their chemical structures, including stereochemical characteristics, were determined. Two glycosides (0.1 μM) showed a recovery effect (p < 0.01) on otic hair cells in zebrafish affected by neomycin ototoxicity. Repeated column chromatography led to the isolation of three new phthalide glycosides, named ligusticosides C (1), D (2), and E (3). Ligusticoside C and ligusticoside E recovered damaged otic hair cells in zebrafish.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1561
Author(s):  
Hyung-Eun Kim ◽  
Jong-Eun Han ◽  
Hyoshin Lee ◽  
Ji-Hye Kim ◽  
Hyun-Hee Kim ◽  
...  

Cnidium officinale is an important medicinal crop grown in Asia for its pharmacological properties. In this study, tetraploid breeding was conducted to increases the content of medicinal compound and tolerance to the environmental conditions using in vitro shoot culture of C. officinale. For this, we generated tetraploid C. officinale plants using oryzalin, a chromosome doubling agent, and compared the morphological traits, cytological characteristics, and heat stress-responsive gene expression levels between tetraploid and diploid genotypes. Chromosome doubling efficiency was the highest in plantlets treated with 4.0 mg∙L−1 oryzalin for 2 days. Compared with diploids, the plant height of tetraploids was reduced, while the petiole diameter was increased by approximately 39%. The dry matter of tetraploid leaves was significantly higher than that of diploid leaves. Compared with diploids, tetraploids showed higher chloroplast number and stomatal complex size but lower chlorophyll and carotenoid contents. The phenolic content of tetraploid plantlets was significantly higher than that of diploid plantlets. Contents of naringin as well as salicylic acid and gentisic acid, which are strong antioxidant compounds, were dramatically increased upon tetraploidization. Interestingly, liquid chromatography–mass spectrometry (LC–MS) analyses revealed increased levels of senkyunolide F and phthalide in tetraploid roots but not in tetraploid or diploid leaves.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bong Nam Chung ◽  
Sun-Jung Kwon ◽  
Ju-Yeon Yoon ◽  
In Sook Cho

Cnidium officinale is a perennial plant in the family Apiaceae. It is native to China and cultivated in China, Japan, and Korea for its roots for medicinal purposes. In August 2019, 63 C. officinale plants showing symptoms of vein chlorosis, yellowing and chlorotic spots (Supplementary Fig. 1) were collected from commercial farms in Bonghwa and Youngyang, Gyeongsangbuk-do, South Korea. Reverse transcription and polymerase chain reaction (RT-PCR) was performed to confirm the presence of apple stem grooving virus (ASGV), cnidium vein yellowing virus 1, cnidium vein yellowing virus 2, lychnis mottle virus, and Cnidium virus X with specific primers (Supplementary Table 1). Forty-one out of the sixty-three samples were positive for ASGV in mixed infection with one or more of the other four viruses. Nicotiana benthamiana plants mechanically inoculated with the crude sap of one of the ASGV-infected C. officinale plants showed mosaic symptom on upper leaves 10 days post inoculation (dpi). Infection was confirmed by RT-PCR and Sanger sequencing. N. benthamiana plants systemically infected with ASGV-CO-kr1 isolate alone were used for subsequent sequencing and host range test. Twenty-day old seedlings of 23 species of plants (two to 14 species for each family) from the families Solanaceae, Chenopodiaceae, Cucurbitaceae, Fabaceae and Amaranthaceae (Supplementary Table 2) were mechanically inoculated with sap of ASGV-CO-kr1-infected N. benthamiana plants. ASGV-CO-kr1 infected all tested 23 species as confirmed by symptomology, RT-PCR, and Sanger sequencing at 10 to 20 dpi. The MP and CP genes of ASGV-CO-kr1 were amplified by RT-PCR with specific primers 4300-4325F/5642-5666R and 5592-5612F/6475-6499R, respectively (Supplementary Table 1). The amplicons were cloned and sequenced (GenBank accession numbers: MP = MW889883 and CP = MW889884). Multiple sequence alignment using the MegAlign program in DNASTAR showed that the complete CP and MP genes of ASGV-CO-kr1 shared 89.9%-99.7% and 83.1%-99.5% identities, respectively at the nucleotide (nt) level and they shared 92.4%-99.6% and 93.8%-99.4% identities, respectively at amino acid (aa) level with corresponding sequences of 34 other ASGV isolates from various host plants and countries. Phylogenetic analysis with the Maximum Likelihood method using the MEGA X program (Kumar et al., 2018) showed that ASGV-CO-kr1 grouped with isolates Cuiguan (KR185346), BH (LC480456), and YY (LC480457) based on the CP aa sequences, while it grouped with isolates SG (LC475148) and TL101 (MH108976) based on the MP aa sequences. ASGV is known to naturally infect apples, European pear, Asian pear, citrus, apricot, cherry, kiwifruit, loquat, lily, and lotus (Clover et al., 2003; He et al., 2019; Hu et al., 2017; Liu et al., 2017; Yanase et al., 1975). To the best of our knowledge, this is the first report of the natural infection of ASGV in C. officinale. C. officinale plants are propagated by root division, so they are susceptible to infection with viruses. The result of this study is important for generating virus-free seedlings to produce C. officinale.


2021 ◽  
Vol 27 (2) ◽  
pp. 76-78
Author(s):  
Kyeungmin Han ◽  
Hyoshin Lee ◽  
Yun Mi Park ◽  
Kwon Seok Jeon ◽  
Wonsu Choen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1440
Author(s):  
Myung-Jin Lee ◽  
Youn-Soo Shim ◽  
So-Youn An ◽  
Min-Kyung Kang

Herein, we investigated the surface characterization and biocompatibility of a denture-lining material containing Cnidium officinale extracts and its antifungal efficacy against Candida albicans. To achieve this, a denture-lining material containing various concentrations of C. officinale extract and a control group without C. officinale extract were prepared. The surface characterization and biocompatibility of the samples were investigated. In addition, the antifungal efficacy of the samples on C. albicans was investigated using spectrophotometric growth and a LIVE/DEAD assay. The results revealed that there was no significant difference between the biocompatibility of the experimental and control groups (p > 0.05). However, there was a significant difference between the antifungal efficiency of the denture material on C. albicans and that of the control group (p < 0.05), which was confirmed by the LIVE/DEAD assay. These results indicate the promising potential of the C. officinale extract-containing denture-lining material as an antifungal dental material.


2021 ◽  
Vol 59 (1) ◽  
pp. 391-400
Author(s):  
Da-Ae Kwon ◽  
Yong Sang Kim ◽  
Seul-Ki Kim ◽  
Sin Hwa Baek ◽  
Hyun Kyu Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document