accretion flow
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 87)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 924 (1) ◽  
pp. L8
Author(s):  
Colin Littlefield ◽  
Jean-Pierre Lasota ◽  
Jean-Marie Hameury ◽  
Simone Scaringi ◽  
Peter Garnavich ◽  
...  

Abstract Magnetically gated accretion has emerged as a proposed mechanism for producing extremely short, repetitive bursts of accretion onto magnetized white dwarfs in intermediate polars (IPs), but this phenomenon has not been detected previously in a confirmed IP. We report the 27 day TESS light curve of V1025 Cen, an IP that shows a remarkable series of 12 bursts of accretion, each lasting for less than 6 hours. The extreme brevity of the bursts and their short recurrence times (∼1–3 days) are incompatible with the dwarf-nova instability, but they are natural consequences of the magnetic gating mechanism developed by Spruit and Taam to explain the Type II bursts of the accreting neutron star known as the Rapid Burster. In this model, the accretion flow piles up at the magnetospheric boundary and presses inward until it couples with the star’s magnetic field, producing an abrupt burst of accretion. After each burst, the reservoir of matter at the edge of the magnetosphere is replenished, leading to cyclical bursts of accretion. A pair of recent studies applied this instability to the suspected IPs MV Lyr and TW Pic, but the magnetic nature of these two systems has not been independently confirmed. In contrast, previous studies have unambiguously established the white dwarf in V1025 Cen to be significantly magnetized. The detection of magnetically gated bursts in a confirmed IP therefore validates the extension of the Spruit and Taam instability to magnetized white dwarfs.


2021 ◽  
Vol 923 (2) ◽  
pp. 272
Author(s):  
Razieh Emami ◽  
Richard Anantua ◽  
Andrew A. Chael ◽  
Abraham Loeb

Abstract We study the effects of including a nonzero positron-to-electron fraction in emitting plasma on the polarized spectral energy distributions and submillimeter images of jet and accretion flow models for near-horizon emission from M87* and Sgr A*. For M87*, we consider a semi-analytic fit to the force-free plasma regions of a general relativistic magnetohydrodynamic jet simulation, which we populate with power-law leptons with a constant electron-to-magnetic pressure ratio. For Sgr A*, we consider a standard self-similar radiatively inefficient accretion flow where the emission is predominantly from thermal leptons with a small fraction in a power-law tail. In both models, we fix the positron-to-electron ratio throughout the emission region. We generate polarized images and spectra from our models using the general relativistic ray tracing and radiative transfer from GRTRANS. We find that a substantial positron fraction reduces the circular polarization fraction at IR and higher frequencies. However, in submillimeter images, higher positron fractions increase polarization fractions due to strong effects of Faraday conversion. We find an M87* jet model that best matches the available broadband total intensity, and 230 GHz polarization data is a sub-equipartition, with positron fraction of ≃10%. We show that jet models with significant positron fractions do not satisfy the polarimetric constraints at 230 GHz from the Event Horizon Telescope (EHT). Sgr A* models show similar trends in their polarization fractions with increasing pair fraction. Both models suggest that resolved, polarized EHT images are useful to constrain the presence of pairs at 230 GHz emitting regions of M87* and Sgr A*.


2021 ◽  
Vol 922 (2) ◽  
pp. 175
Author(s):  
Scott C. Noble ◽  
Julian H. Krolik ◽  
Manuela Campanelli ◽  
Yosef Zlochower ◽  
Bruno C. Mundim ◽  
...  

Abstract Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an “overdensity” or “lump;” this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.


Author(s):  
N. M. Murillo ◽  
E. F. van Dishoeck ◽  
A. Hacar ◽  
D. Harsono ◽  
J. K. Jorgensen
Keyword(s):  

2021 ◽  
Author(s):  
Mariano Mendez ◽  
Konstantinos Karpouzas ◽  
Federico Garcia ◽  
Liang Zhang ◽  
Yuexin Zhang ◽  
...  

Abstract GRS 1915+1051 was the first stellar-mass black-hole in our Galaxy to display a superluminal radio jet2, similar to those observed in active galactic nuclei with a supermassive black hole at the centre3. It has been proposed that the radio emission in GRS 1915+105 is fed by instabilities in the accretion disc4 by which the inner parts of the accretion flow is ejected in the jet5–7. Here we show that there is a significant correlation between: (i) the radio flux, coming from the jet, and the flux of the iron emission line, coming from the disc and, (ii) the temperature of the corona that produces the high-energy part of the X-ray spectrum via inverse Compton scattering and the amplitude of a high-frequency variability component coming from the innermost part of the accretion flow. At the same time, the radio flux and the flux of the iron line are strongly anti-correlated with the temperature of the X-ray corona and the amplitude of the high-frequency variability component. These correlations persist over ~10 years, despite the highly variable X-ray and radio properties of the source in that period8,9. Our findings provide, for the first time, incontrovertible evidence that the energy that powers this black-hole system can be directed either to the X-ray corona or the jet. When this energy is used to power the corona, raising its temperature, there is less energy left to fuel the jet and the radio flux drops, and vice versa. These facts, plus the modelling of the variability in this source show conclusively that in GRS 1915+105 the X-ray corona morphs into the jet.


Author(s):  
A. Marino ◽  
S. Barnier ◽  
P. O. Petrucci ◽  
M. Del Santo ◽  
J. Malzac ◽  
...  
Keyword(s):  

2021 ◽  
Vol 916 (2) ◽  
pp. 68
Author(s):  
Anuvab Banerjee ◽  
Ayan Bhattacharjee ◽  
Debjit Chatterjee ◽  
Dipak Debnath ◽  
Sandip Kumar Chakrabarti ◽  
...  

2021 ◽  
Author(s):  
Mathis Houllé ◽  
Elyar Sedaghati ◽  
Pedro Figueira ◽  
Arthur Vigan 

<p>In the current theories of planet formation, the amount of energy that a forming gas giant retains from its accretion flow is still unknown. This unconstrained parameter has a large impact on the post-formation evolution of the new planet, as it defines its initial temperature and luminosity. Models have been developed, ranging from “hot-start” models assuming that all the energy is retained internally, to “cold-start” ones assuming that everything is radiated away, and "warm-start" ones in between. Their coexistence introduces large degeneracies on the determination of age and mass in direct imaging observations, as these studies use the cold or hot-start models to infer these parameters from the observed luminosity of a planet. A promising way of solving this problem is the study of atomic emission lines originating from the hot gas shocked by the accretion flow. Recently, Aoyama et al. (2018, 2020) presented simulations of hydrogen lines emitted by the accretion shock onto the circumplanetary disk and the planetary surface. They showed that the line luminosity and width can be used to infer the protoplanet mass, thus giving an estimation that is independent from the evolution models. They applied it to the case of PDS70 b and c (Aoyama & Ikoma 2019, Hashimoto et al. 2020), but were ultimately limited by the spectral resolution of the MUSE observations they used (R ~ 2500). In this context, our team recently proposed and carried out a pilot program using the VLT/ESPRESSO fiber-fed spectrograph, equipped with very high resolution (R = 190 000), to characterize the Hα line of the young substellar companion GQ Lup b. We will present in this poster how these observations were conducted, the methods used to remove the contamination from the host star, and the results we obtained.</p>


Sign in / Sign up

Export Citation Format

Share Document