systems of differential equations
Recently Published Documents


TOTAL DOCUMENTS

900
(FIVE YEARS 90)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 2 (2) ◽  
pp. 13-30
Author(s):  
Awais Younus ◽  
Muhammad Asif ◽  
Usama Atta ◽  
Tehmina Bashir ◽  
Thabet Abdeljawad

In this paper, we provide the generalization of two predefined concepts under the name fuzzy conformable differential equations. We solve the fuzzy conformable ordinary differential equations under the strongly generalized conformable derivative. For the order $\Psi$, we use two methods. The first technique is to resolve a fuzzy conformable differential equation into two systems of differential equations according to the two types of derivatives. The second method solves fuzzy conformable differential equations of order $\Psi$ by a variation of the constant formula. Moreover, we generalize our results to solve fuzzy conformable ordinary differential equations of a higher order. Further, we provide some examples in each section for the sake of demonstration of our results.


2021 ◽  
Vol 104 (4) ◽  
pp. 142-150
Author(s):  
O.N. Stanzhytskyi ◽  
◽  
A.T. Assanova ◽  
M.A. Mukash ◽  
◽  
...  

The averaging method, originally offered by Krylov and Bogolyubov for ordinary differential equations, is one of the most widespread and effective methods for the analysis of nonlinear dynamical systems. Further, the averaging method was developed and applied for investigating of various problems. Impulsive systems of differential equations supply as mathematical models of objects that, during their evolution, they are subjected to the action of short-term forces. Many researches have been devoted to non-fixed impulse problems. For these problems, the existence, stability, and other asymptotic properties of solutions were studied and boundary value problems for impulsive systems were considered. Questions of the existence of periodic and almost periodic solutions to impulsive systems also were examined. In this paper, the averaging method is used to study the existence of two-sided solutions bounding on the axis of impulse systems of differential equations with non-fixed times. It is shown that a one-sided, bounding, asymptotically stable solution to the averaged system generates a two-sided solution to the exact system. The closeness of the corresponding solutions of the exact and averaged systems both on finite and infinite time intervals is substantiated by the first and second theorems of N.N. Bogolyubov.


2021 ◽  
Vol 13 (4) ◽  
pp. 495-500
Author(s):  
Mikhail А. Zaytsev ◽  
◽  
Alexander K. Korovin ◽  
Sergey B. Savilkin ◽  
Andrey V. Sukhov ◽  
...  

The paper discusses a mathematical model of the functioning of communication spacecraft, using systems of differential equations for translational and rotational motion, as well as the process of distributing problems in a constellation of three satellites. The model is implemented by means of the python 3.6 language and the computational method library numpy1.19. A series of computational experiments was carried out in order to estimate the energy costs for the operation of grouping with various orbital parameters and external impact models. The presented results of the experiments suggest the possibility of increasing the life of spacecraft by improving the operating system.


Author(s):  
Natalia Marchenko ◽  
Ganna Sydorenko ◽  
Roman Rudenko

The article considers the study of methods for numerical solution of systems of differential equations using neural networks. To achieve this goal, thefollowing interdependent tasks were solved: an overview of industries that need to solve systems of differential equations, as well as implemented amethod of solving systems of differential equations using neural networks. It is shown that different types of systems of differential equations can besolved by a single method, which requires only the problem of loss function for optimization, which is directly created from differential equations anddoes not require solving equations for the highest derivative. The solution of differential equations’ system using a multilayer neural networks is thefunctions given in analytical form, which can be differentiated or integrated analytically. In the course of this work, an improved form of constructionof a test solution of systems of differential equations was found, which satisfies the initial conditions for construction, but has less impact on thesolution error at a distance from the initial conditions compared to the form of such solution. The way has also been found to modify the calculation ofthe loss function for cases when the solution process stops at the local minimum, which will be caused by the high dependence of the subsequentvalues of the functions on the accuracy of finding the previous values. Among the results, it can be noted that the solution of differential equations’system using artificial neural networks may be more accurate than classical numerical methods for solving differential equations, but usually takesmuch longer to achieve similar results on small problems. The main advantage of using neural networks to solve differential equations` system is thatthe solution is in analytical form and can be found not only for individual values of parameters of equations, but also for all values of parameters in alimited range of values.


Author(s):  
Olena Nikulina ◽  
Valerii Severyn ◽  
Mariia Naduieva ◽  
Anton Bubnov

Mathematical models of the epidemic have been developed and researched to predict the development of the COVID-19 coronavirus epidemic on thebasis of information technology for optimizing complex dynamic systems. Mathematical models of epidemics SIR, SIRS, SEIR, SIS, MSEIR in theform of nonlinear systems of differential equations are considered and the analysis of use of mathematical models for research of development ofepidemic of coronavirus epidemic COVID-19 is carried out. Based on the statistics of the COVID-19 coronavirus epidemic in the Kharkiv region, theinitial values of the parameters of the models of the last wave of the epidemic were calculated. Using these models, the program of the first-degreesystem method from the module of information technology integration methods for solving nonlinear systems of differential equations simulated thedevelopment of the last wave of the epidemic. Simulation shows that the number of healthy people will decrease and the number of infected peoplewill increase. In 12 months, the number of infected people will reach its maximum and then begin to decline. The information technology ofoptimization of dynamic systems is used to identify the parameters of the COVID-19 epidemic models on the basis of statistical data on diseases in theKharkiv region. Using the obtained models, the development of the last wave of the COVID-19 epidemic in Kharkiv region was predicted. Theprocesses of epidemic development according to the SIR-model with weakening immunity are given, with the values of the model parameters obtainedas a result of identification. Approximately 13 months after the outbreak of the epidemic, the number of infected people will reach its maximum andthen begin to decline. In 10 months, the entire population of Kharkiv region will be infected. These results will allow us to predict possible options forthe development of the epidemic of coronavirus COVID-19 in the Kharkiv region for the timely implementation of adequate anti-epidemic measures.


Author(s):  
Giuseppe Izzo ◽  
Zdzisław Jackiewicz

AbstractWe investigate strong stability preserving (SSP) implicit-explicit (IMEX) methods for partitioned systems of differential equations with stiff and nonstiff subsystems. Conditions for order p and stage order $$q=p$$ q = p are derived, and characterization of SSP IMEX methods is provided following the recent work by Spijker. Stability properties of these methods with respect to the decoupled linear system with a complex parameter, and a coupled linear system with real parameters are also investigated. Examples of methods up to the order $$p=4$$ p = 4 and stage order $$q=p$$ q = p are provided. Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration, and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.


Author(s):  
Alla Savranska ◽  
Oleksandr Denisenko

The subject of research in the article is sigularly perturbed controllable systems of differential equations containing terms with a small parameters on the right-hand side, which are not completely known, but only satisfy some constraints. The aim of the work is to expand the study of the behavior of solutions of singularly perturbed systems of differential equations to the case when the system is influenced not only by dynamic (small factor at the derivative) but also parametric (small factor at the right side of equations) uncertainties and to determine conditions under which such systems will be asymptotically resistant to any perturbations, estimate the upper limit of the small parameter, so that for all values of this parameter less than the obtained estimate, the undisturbed solution of the system was asymptotically stable. The following problems are solved in the article: singularly perturbed systems of differential equations with regular perturbations in the form of terms with a small parameter in the right-hand sides, which are not fully known, are investigated; an estimate is made of the areas of asymptotic stability of the unperturbed solution of such systems, that is, the class of systems that can be investigated for stability is expanded, the formulas obtained that allow one to analyze the asymptotic stability of solutions to systems even under conditions of incomplete information about the perturbations acting on them. The following methods are used: mathematical modeling of complex control systems; vector Lyapunov functions investigation of asymptotic stability of solutions of systems of differential equations. The following results were obtained: an estimate was made for the upper bound of a small parameter for sigularly perturbed systems of differential equations with fully known parametric (fully known) and dynamic uncertainties, such that for all values of this parameter less than the obtained estimate, such an unperturbed solution is asymptotically stable; a theorem is proved in which sufficient conditions for the uniform asymptotic stability of such a system are formulated. Conclusions: the method of vector Lyapunov functions extends to the class of singularly perturbed systems of differential equations with a small factor in the right-hand sides, which are not completely known, but only satisfy certain constraints.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Seher Melike Aydogan ◽  
Fethiye Muge Sakar ◽  
Mostafa Fatehi ◽  
Shahram Rezapour ◽  
Hashem Parvaneh Masiha

AbstractSome complicated events can be modeled by systems of differential equations. On the other hand, inclusion systems can describe complex phenomena having some shocks better than the system of differential equations. Also, one of the interests of researchers in this field is an investigation of hybrid systems. In this paper, we study the existence of solutions for hybrid and non-hybrid k-dimensional sequential inclusion systems by considering some integral boundary conditions. In this way, we use different methods such as α-ψ contractions and the endpoint technique. Finally, we present two examples to illustrate our main results.


Author(s):  
Ivana Jovović

This paper deals with different approaches for solving linear systems of the first order differential equations with the system matrix in the symmetric arrowhead form.Some needed algebraic properties of the symmetric arrowhead matrix are proposed.We investigate the form of invariant factors of the arrowhead matrix.Also the entries of the adjugate matrix of the characteristic matrix of the arrowhead matrix are considered. Some reductions techniques for linear systems of differential equations with the system matrix in the arrowhead form are presented.


Sign in / Sign up

Export Citation Format

Share Document