Certificate Revocation
Recently Published Documents





2021 ◽  
Xiaofeng Shi ◽  
Shouqian Shi ◽  
Minmei Wang ◽  
Jonne Kaunisto ◽  
Chen Qian

Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 277
Anant Sujatanagarjuna ◽  
Arne Bochem ◽  
Benjamin Leiding

Protocol flaws such as the well-known Heartbleed bug, security and privacy issues or incomplete specifications, in general, pose risks to the direct users of a protocol and further stakeholders. Formal methods, such as Colored Petri Nets (CPNs), facilitate the design, development, analysis and verification of new protocols; the detection of flaws; and the mitigation of identified security risks. BlockVoke is a blockchain-based scheme that decentralizes certificate revocations, allows certificate owners and certificate authorities to revoke certificates and rapidly distributes revocation information. CPNs in particular are well-suited to formalize blockchain-based protocols—thus, in this work, we formalize the BlockVoke protocol using CPNs, resulting in a verifiable CPN model and a formal specification of the protocol. We utilize an agent-oriented modeling (AOM) methodology to create goal models and corresponding behavior interface models of BlockVoke. Subsequently, protocols semantics are defined, and the CPN models are derived and implemented using CPN Tools. Moreover, a full state-space analysis of the resulting CPN model is performed to derive relevant model properties of the protocol. The result is a complete and correct formal BlockVoke specification used to guide future implementations and security assessments.

2021 ◽  
Vol 104 ◽  
pp. 102209
Yves Christian Elloh Adja ◽  
Badis Hammi ◽  
Ahmed Serhrouchni ◽  
Sherali Zeadally

2021 ◽  
Vol 13 (5) ◽  
pp. 2549
Shahid Mahmood ◽  
Moneeb Gohar ◽  
Jin-Ghoo Choi ◽  
Seok-Joo Koh ◽  
Hani Alquhayz ◽  

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.

Sign in / Sign up

Export Citation Format

Share Document