aortic valve leaflets
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Arun Singhal ◽  
Jarrod Bang ◽  
Anthony L. Panos ◽  
Andrew Feider ◽  
Satoshi Hanada ◽  
...  

Aortic valve regurgitation in patients undergoing LVAD implantation is a significant complication which occurs in up to 10% of patients in the INTERMACS database. Patients who have aortic valve regurgitation at the time of implant have been handled by several methods, including aortic valve leaflets approximation, to aortic valve replacement or even valve closure. We report a case where we used HAART Ring to repair a regurgitant aortic valve during LAVD implant for destination therapy.


2021 ◽  
Vol 10 (2) ◽  
pp. 16-24
Author(s):  
T. V. Glushkova ◽  
A. E. Kostyunin

Highlights. The morphology and elemental composition of calcium deposits formed in the tissues of epoxytreated aortic and mitral bioprostheses do not differ from those in the mineralized matrix of stenotic human aortic valve leaflets. Despite similar elemental composition of mineral deposits in the KemCor and UniLine bioprostheses, the morphology of these calcifications differs between bioprosthetic heart valve substitutes and, apparently, is associated with the specific structure of the fibrous matrix of the biological tissues that are used for their manufacturing.Aim. To analyze the morphology and elemental composition of mineral deposits formed in epoxy-treated aortic and mitral bioprosthetic heart valves made from xenoaortic or xenopericardial material and to compare the obtained findings with the data on calcified human aortic valve.Methods. Leaflets of the mitral and aortic bioprosthetic heart valves KemCor and UniLine (NeoKor, L Russia, Kemerovo) that were explanted due to their failure, as well as leaflets of the calcified native aortic valve were evaluated. The morphology of calcifications was studied by scanning electron microscopy using an S-3400N microscope (Hitachi, Japan). The elemental composition of calcium deposits was studied by electron probe microanalysis using Hitachi S-3400N microscope with energy dispersive spectrometer Bruker XFlash 4010 (Bruker, Germany).Results. Large calcifications located at the internal layers of samples were surrounded by collagen fibers commonly with evident signs of the onset of mineralization. Calcium deposits in the native aortic valve and xenoartic bioprostheses KemCor were located mainly at the spongy layer and had a loose structure, while dense lamellar deposits were found at the leaflets of pericardial bioprostheses UniLine. The elemental composition of calcium deposits showed the presence of Ca, P, O, Mg, and Na in the mineralized regions and the presence of S in the regions of low electron density. The calcium to phosphorus ratio (Ca:P) in the calcifications of the aortic valve leaflets was 1.81 (1.79-1.84; min - 1.48; max - 2.05), whereas the Ca:P ratios in the UniLine and KemCor bioprostheses were 1.78 (1.75-1.86; min - 1.52; max - 2.03) and 1.82 (1.81-1.88; min - 1.71; max - 2.06), respectively. There were no significant differences in the Ca:P ratios between calcifications in the study groups (p>0.05).Conclusion. Calcium deposits detected in epoxy-treated bioprostheses and human aortic valve appeared to be formed under dystrophic calcification. The morphology of calcifications in bioprostheses depended on the type of biological tissue. None correlations between the morphological structure of calcifications and the implantation position were found in bioprosthetic leaflets. The elemental composition of mineral deposits was similar in all study samples.


2021 ◽  
Author(s):  
Ismail Bouhout ◽  
Vincent Chauvette ◽  
Wu Rong ◽  
Marie Josée Raboisson ◽  
Ismail El-Hamamsy ◽  
...  

Author(s):  
Takahiro Shojima ◽  
Yasuyuki Zaima ◽  
Kazuyoshi Takagi ◽  
Tohru Takaseya ◽  
Hiroyuki Otsuka ◽  
...  

We report about a 78-year-old woman with severe aortic valve stenosis (AS). She had heavily calcified and thickened aortic valve leaflets with black pigmentation. After excision of the aortic valve leaflets, biological aortic valve replacement (AVR) was performed. Alkaptonuria was diagnosed and confirmed based on increased urinary excretion of homogentisic acid. She has had no cardiovascular system-related symptoms for 3 years and no evidence of structural valve deterioration. Data on the long-term outcomes of AVR associated with structural valve deterioration that could regulate prosthetic valve selection in alkaptonuria are limited. Therefore, further research on the natural evolution of AS and the rate of structural valve deterioration after AVR is needed to provide an optimal prosthesis for these patients.


2021 ◽  
Vol 37 (5) ◽  
pp. 52-60
Author(s):  
M. N. Askadinov ◽  
B. K. Kadyraliev ◽  
S. H. Lilotkhia ◽  
O. G. Musaev ◽  
V. B. Arutyunyan

Regarding degenerative defects of the aortic valve, the main method of treatment is dissection of malformed leaflets and placement of prosthetic valve. In most cases, mechanical and biological prostheses are used. Each type of prosthesis has shortcomings related to both the implantation technique and essential medication support to keep it functioning. Patients with implanted mechanical prosthesis need lifelong anticoagulation therapy and constant monitoring of blood coagulation rates, where on the one hand there is a risk of occurring thromboembolic complications, and on the other hand haemorrhagic complications. The peculiarity of biological prostheses is a high probability of degeneration and the need for re-operation, especially in young patients, therefore the implantation of such prostheses is mainly carried out in elderly patients. Despite continuous change and modification of artificial valves, the ideal aortic valve prosthesis does not exist today. Various attempts to replace aortic valve leaflets with artificial and biological materials have not succeeded or gained great recognition. In 2007, Shigeyuki Ozaki introduced a technique to replace the aortic valve leaflets with an autopericardium treated with 0.6 % glutar aldehyde solution. Inspite of the encouraging mid-term results, this surgery has not yet become widespread among cardiac surgeons due to the complicated operating technique and lack of long-term results. Considering the research of literature, experience of different cardiosurgical centers in this field as well as our own experience, there is a need to systematize the results of Ozaki procedure, among patients with aortic valve pathology, presented in the recent publications.


2020 ◽  
Vol 11 ◽  
Author(s):  
Arsenii Zabirnyk ◽  
Maria del Mar Perez ◽  
Marc Blasco ◽  
Kåre-Olav Stensløkken ◽  
Miguel D. Ferrer ◽  
...  

Background: No pharmacological treatment exists to prevent or stop the calcification process of aortic valves causing aortic stenosis. The aim of this study was to develop a robust model of induced calcification in whole aortic valve leaflets which could be suitable for studies of the basic mechanisms and for testing potentially inhibitory drugs.Methods: Pig hearts were obtained from a commercial abattoir. The aortic valve leaflets were dissected free and randomized between experimental groups. Whole leaflets were cultured in individual wells. Two growth media were used for cultivation: standard growth medium and an antimyofibroblastic growth medium. The latter was employed to inhibit contraction of the leaflet into a ball-like structure. Calcification was induced in the growth medium by supplementation with an osteogenic medium. Leaflets were cultivated for four weeks and medium was changed every third day. To block calcification, the inhibitor SNF472 (a formulation of the hexasodium salt of myo-inositol hexaphosphate hexasodium salt) was used at concentrations between 1 and 100 µM. After cultivation for four weeks the leaflets were snap frozen in liquid nitrogen and kept at −80 °C until blind assessment of the calcium amount in leaflets by inductively coupled plasma optical emission spectroscopy. For statistical analysis, a Kruskal–Wallis test with Dunn’s post-test was applied.Results: Osteodifferentiation with calcium accumulation was in principle absent when standard medium was used. However, when the antimyofibroblastic medium was used, a strong calcium accumulation was induced (p = 0.006 compared to controls), and this was blocked in a dose-dependent manner by the calcification inhibitor SNF472 (p = 0.008), with an EC50 of 3.3 µM.Conclusion: A model of experimentally induced calcification in cultured whole leaflets from porcine aortic valves was developed. This model can be useful for studying the basic mechanisms of valve calcification and to test pharmacological approaches to inhibit calcification.


Sign in / Sign up

Export Citation Format

Share Document