red edge
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 179)

H-INDEX

54
(FIVE YEARS 9)

2022 ◽  
Vol 14 (2) ◽  
pp. 285
Author(s):  
Tao Zhang ◽  
Xiaodong Jiang ◽  
Linlin Jiang ◽  
Xuran Li ◽  
Shenbin Yang ◽  
...  

To analyze the hyperspectral reflectance characteristics of rice canopies under changes in diffuse radiation fraction, experiments using different cover materials were performed in Nanjing, China, during 2016 and 2017. Each year, two treatments with different reduction ratios of diffuse radiation fraction but with similar shading rates were set in the field experiment: In T1, total solar radiation shading rate was 14.10%, and diffuse radiation fraction was 31.09%; in T2, total solar radiation shading rate was 14.42%, and diffuse radiation fraction was 39.98%, respectively. A non-shading treatment was included as a control (CK). Canopy hyperspectral reflectance, soil and plant analyzer development (SPAD), and leaf area index (LAI) were measured under shading treatments on different days after heading. The red-edge parameters (position, λ0; maximum amplitude, Dλ; area, α0; width, σ) were calculated, as well as the area, depth, and width of three absorption bands. The location of the first absorption band appeared in the range of 553–788 nm, and the second and third absorption bands appeared in the range of 874–1257 nm. The results show that the shading treatment had a significant effect on the rice canopy’s hyperspectral reflectance. Compared with CK, the canopy reflectance of T1 (the diffuse radiation fraction was 31.09%) and T2 (the diffuse radiation fraction was 39.98%) decreased in the visible light range (350–760 nm) and increased in the near-infrared range (800–1350 nm), while the red-edge parameters (λ0, Dλ, α0), SPAD, and LAI increased. On the other hand, under shading treatment, the increase in diffuse radiation fraction also had a significant impact on the hyperspectral spectra of the rice canopy, especially at 14 days after heading. Compared with T1, the green peak (550 nm) of T2 reduced by 16.12%, and the average reflectance at 800–900 nm increased by 10%. Based on correlation analysis, it was found that these hyperspectral reflectance characteristics were mainly due to the increase in SPAD (2.31%) and LAI (7.62%), which also led to the increase in Dλ (8.70%) and α0 (13.89%). Then, the second and third absorption features of T2 were significantly different from that of T1, which suggests that the change in diffuse radiation fraction could affect the process of water vapor absorption by rice.


2021 ◽  
Author(s):  
Ning Wang ◽  
Guang Yang ◽  
Xueying Han ◽  
Guangpu Jia ◽  
Feng Liu ◽  
...  

Abstract Sabina vulgaris is a group tree species in Mu Us Sandy Land. Understanding the growth status of Sabina vulgaris has guiding value for vegetation change monitoring. Chlorophyll is an important indicator to characterize the growth status of plants, and its content changes are important for analyzing the physiological growth status of plants and guiding the precise planting of plants. In this paper, the spectral reflectance and chlorophyll content of Sabina vulgaris were measured by SVC HR-1024 portable ground feature spectrometer and SPAD502 chlorophyll instrument, and the relationship between ground feature spectral characteristics and chlorophyll content of Sabina vulgaris was studied. The results show that there is a correlation between the vegetation index and chlorophyll, the effect of NDVI is the best, the bands with the highest correlation are the combined bands of 470nm-500nm, 610nm-680nm, and 740nm-840nm, and the wavelengths with the highest correlation are (660,790); Vegetation index, red-edge parameters, and chlorophyll have a certain correlation. The fitting effect of the model established by vegetation index is better than that established by red-edge parameters, and the highest R2 is 0.97; Among the three modeling methods, the model fitting effect of partial least squares is the best, R2 is > 0.91, and the disadvantage is that the processing process is complex; The processing method of the univariate linear regression model is the simplest, but the disadvantage is that the accuracy of the model is unstable, R2 is between 0.1-0.9, so the multivariate linear regression model is the most suitable of the three methods(R2>0.8).


2021 ◽  
Author(s):  
Sarah Becker ◽  
Craig Daughtry ◽  
Andrew Russ

Trees occur in many land cover classes and provide significant ecosystem services. Remotely sensed multispectral images are often used to create thematic maps of land cover, but accurately identifying trees in mixed land-use scenes is challenging. We developed two forest cover indices and protocols that reliably identified trees in WorldView-2 multispectral images. The study site in Maryland included coniferous and deciduous trees associated with agricultural fields and pastures, residential and commercial buildings, roads, parking lots, wetlands, and forests. The forest cover indices exploited the product of either the reflectance in red (630 to 690 nm) and red edge (705 to 745 nm) bands or the product of reflectance in red and near infrared (770 to 895 nm) bands. For two classes (trees versus other), overall classification accuracy was >77 percent for the four images that were acquired in each season of the year. Additional research is required to evaluate these indices for other scenes and sensors.


2021 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Razieh Barzin ◽  
Hossein Lotfi ◽  
Jac J. Varco ◽  
Ganesh C. Bora

Applying the optimum rate of fertilizer nitrogen (N) is a critical factor for field management. Multispectral information collected by active canopy sensors can potentially indicate the leaf N status and aid in predicting grain yield. Crop Circle multispectral data were acquired with the purpose of measuring the reflectance data to calculate vegetation indices (VIs) at different growth stages. Applying the optimum rate of fertilizer N can have a considerable impact on grain yield and profitability. The objectives of this study were to evaluate the reliability of a handheld Crop Circle ACS-430, to estimate corn leaf N concentration and predict grain yield of corn using machine learning (ML) models. The analysis was conducted using four ML models to identify the best prediction model for measurements acquired with a Crop Circle ACS-430 field sensor at three growth stages. Four fertilizer N levels from deficient to excessive in 50/50 spilt were applied to corn at 1–2 leaves, with visible leaf collars (V1-V2 stage) and at the V6-V7 stage to establish widely varying N nutritional status. Crop Circle spectral observations were used to derive 25 VIs for different growth stages (V4, V6, and VT) of corn at the W. B. Andrews Agricultural Systems farm of Mississippi State University. Multispectral raw data, along with Vis, were used to quantify leaf N status and predict the yield of corn. In addition, the accuracy of wavelength-based and VI-based models were compared to examine the best model inputs. Due to limited observed data, the stratification approach was used to split data to train and test set to obtain balanced data for each stage. Repeated cross validation (RCV) was then used to train the models. Results showed that the Simplified Canopy Chlorophyll Content Index (SCCCI) and Red-edge ratio vegetation index (RERVI) were the most effective VIs for estimating leaf N% and that SCCCI, Red-edge chlorophyll index (CIRE), RERVI, Soil Adjusted Vegetation Index (SAVI), and Normalized Difference Vegetation Index (NDVI) were the most effective VIs for predicting corn grain yield. Additionally, among the four ML models utilized in this research, support vector regression (SVR) achieved the most accurate results for estimating leaf N concentration using either spectral bands or VIs as the model inputs.


2021 ◽  
Author(s):  
Jingfa Wang

As a unique wetland type, forest swamps play an important role in regional carbon cycling and biodiversity conservation. Taking Hani wetland in Jilin province as the research object, we integrated the application of Sentinel-1 radar and Sentinel-2 multispectral images, fully exploited the potential of Sentinel-1 multi-polarization band features and Sentinel-2 red edge index for forest swamp remote sensing identification, and applied the random forest method to realize the extraction of forest swamp distribution information of Hani wetland. The results show that when the optimal number of decision trees for forest swamp information extraction is 1200, the fusion of Sentinel-1VV and VH backscattering coefficient radar band features and Sentinel-2 red-edge band features can significantly improve the extraction accuracy of forest swamp distribution information, and the overall accuracy and Kappa coefficient of forest swamp information extraction in protected areas are as high as 89% and 0.85, respectively. The overall accuracy and Kappa coefficient of forest swamp information extraction in the protected area were 89% and 0.85, respectively. The landscape types of Hani Wetlands of International Importance are diversified, with natural wetlands, artificial wetlands and non-wetland landscape types co-existing. Among the natural wetland types, the forest swamp has the largest area of 27.1 km2, accounting for 11.2% of the total area of the reserve; the river has the smallest area of 0.7 km2, accounting for 0.3% of the total area of the reserve. The forest swamp extraction method provides data support for the sustainable management of Hani wetlands and case guidance for forest swamp mapping in other regions.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2592
Author(s):  
Karel Klem ◽  
Jan Křen ◽  
Ján Šimor ◽  
Daniel Kováč ◽  
Petr Holub ◽  
...  

Malting barley requires sensitive methods for N status estimation during the vegetation period, as inadequate N nutrition can significantly limit yield formation, while overfertilization often leads to an increase in grain protein content above the limit for malting barley and also to excessive lodging. We hypothesized that the use of N nutrition index and N uptake combined with red-edge or green reflectance would provide extended linearity and higher accuracy in estimating N status across different years, genotypes, and densities, and the accuracy of N status estimation will be further improved by using artificial neural network based on multiple spectral reflectance wavelengths. Multifactorial field experiments on interactive effects of N nutrition, sowing density, and genotype were conducted in 2011–2013 to develop methods for estimation of N status and to reduce dependency on changing environmental conditions, genotype, or barley management. N nutrition index (NNI) and total N uptake were used to correct the effect of biomass accumulation and N dilution during plant development. We employed an artificial neural network to integrate data from multiple reflectance wavelengths and thereby eliminate the effects of such interfering factors as genotype, sowing density, and year. NNI and N uptake significantly reduced the interannual variation in relationships to vegetation indices documented for N content. The vegetation indices showing the best performance across years were mainly based on red-edge and carotenoid absorption bands. The use of an artificial neural network also significantly improved the estimation of all N status indicators, including N content. The critical reflectance wavelengths for neural network training were in spectral bands 400–490, 530–570, and 710–720 nm. In summary, combining NNI or N uptake and neural network increased the accuracy of N status estimation to up 94%, compared to less than 60% for N concentration.


2021 ◽  
Vol 13 (24) ◽  
pp. 5173
Author(s):  
Xiaofeng Cao ◽  
Yulin Liu ◽  
Rui Yu ◽  
Dejun Han ◽  
Baofeng Su

High throughput phenotyping (HTP) for wheat (Triticum aestivum L.) stay green (SG) is expected in field breeding as SG is a beneficial phenotype for wheat high yield and environment adaptability. The RGB and multispectral imaging based on the unmanned aerial vehicle (UAV) are widely popular multi-purpose HTP platforms for crops in the field. The purpose of this study was to compare the potential of UAV RGB and multispectral images (MSI) in SG phenotyping of diversified wheat germplasm. The multi-temporal images of 450 samples (406 wheat genotypes) were obtained and the color indices (CIs) from RGB and MSI and spectral indices (SIs) from MSI were extracted, respectively. The four indices (CIs in RGB, CIs in MSI, SIs in MSI, and CIs + SIs in MSI) were used to detect four SG stages, respectively, by machine learning classifiers. Then, all indices’ dynamics were analyzed and the indices that varied monotonously and significantly were chosen to calculate wheat temporal stay green rates (SGR) to quantify the SG in diverse genotypes. The correlations between indices’ SGR and wheat yield were assessed and the dynamics of some indices’ SGR with different yield correlations were tracked in three visual observed SG grades samples. In SG stage detection, classifiers best average accuracy reached 93.20–98.60% and 93.80–98.80% in train and test set, respectively, and the SIs containing red edge or near-infrared band were more effective than the CIs calculated only by visible bands. Indices’ temporal SGR could quantify SG changes on a population level, but showed some differences in the correlation with yield and in tracking visual SG grades samples. In SIs, the SGR of Normalized Difference Red-edge Index (NDRE), Red-edge Chlorophyll Index (CIRE), and Normalized Difference Vegetation Index (NDVI) in MSI showed high correlations with yield and could track visual SG grades at an earlier stage of grain filling. In CIs, the SGR of Normalized Green Red Difference Index (NGRDI), the Green Leaf Index (GLI) in RGB and MSI showed low correlations with yield and could only track visual SG grades at late grain filling stage and that of Norm Red (NormR) in RGB images failed to track visual SG grades. This study preliminarily confirms the MSI is more available and reliable than RGB in phenotyping for wheat SG. The index-based SGR in this study could act as HTP reference solutions for SG in diversified wheat genotypes.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1768
Author(s):  
Yiying Hua ◽  
Xuesheng Zhao

In remote sensing, red edge bands are important indicators for monitoring vegetation growth. To examine the application potential of red edge bands in forest canopy closure estimation, three types of commonly used models—empirical statistical models (multiple stepwise regression (MSR)), machine learning models (back propagation neural network (BPNN)) and physical models (Li–Strahler geometric-optical (Li–Strahler GO) models)—were constructed and verified based on Sentinel-2 data, DEM data and measured data. In addition, we set up a comparative experiment without red edge bands. The relative error (ER) values of the BPNN model, MSR model, and Li–Strahler GO model with red edge bands were 16.97%, 20.76% and 24.83%, respectively. The validation accuracy measures of these models were higher than those of comparison models. For comparative experiments, the ER values of the MSR, Li–Strahler GO and BPNN models were increased by 13.07%, 4% and 1.22%, respectively. The experimental results demonstrate that red edge bands can effectively improve the accuracy of forest canopy closure estimation models to varying degrees. These findings provide a reference for modeling and estimating forest canopy closure using red edge bands based on Sentinel-2 images.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8224
Author(s):  
Cuizhen Wang

Rapid advancement of drone technology enables small unmanned aircraft systems (sUAS) for quantitative applications in public and private sectors. The drone-mounted 5-band MicaSense RedEdge cameras, for example, have been popularly adopted in the agroindustry for assessment of crop healthiness. The camera extracts surface reflectance by referring to a pre-calibrated reflectance panel (CRP). This study tests the performance of a Matrace100/RedEdge-M camera in extracting surface reflectance orthoimages. Exploring multiple flights and field experiments, an at-sensor radiometric correction model was developed that integrated the default CRP and a Downwelling Light Sensor (DLS). Results at three vegetated sites reveal that the current CRP-only RedEdge-M correction procedure works fine except the NIR band, and the performance is less stable on cloudy days affected by sun diurnal, weather, and ground variations. The proposed radiometric correction model effectively reduces these local impacts to the extracted surface reflectance. Results also reveal that the Normalized Difference Vegetation Index (NDVI) from the RedEdge orthoimage is prone to overestimation and saturation in vegetated fields. Taking advantage of the camera’s red edge band centered at 717 nm, this study proposes a red edge NDVI (ReNDVI). The non-vegetation can be easily excluded with ReNDVI < 0.1. For vegetation, the ReNDVI provides reasonable values in a wider histogram than NDVI. It could be better applied to assess vegetation healthiness across the site.


Sign in / Sign up

Export Citation Format

Share Document