intermittent water supply
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Anujkumar Ghorpade ◽  
Abhishek Kumar Sinha ◽  
Pradip P. Kalbar

Intermittent Water Supply (IWS) is prevalent in most developing countries. Specifically, in India, IWS is existent throughout the country. Many studies focus on documenting the effects of IWS, and rarely the drivers of the IWS regime are studied. In this study, a systematic literature review was conducted on IWS studies around the globe. The various causes for IWS were documented. Then, by studying India's typical water supply system (WSS) configuration, the vicious cycle of IWS in India is discussed. Further, the drivers of IWS were identified and elaborated with the causing mechanisms. This knowledge will help devise strategies and solutions for improving the IWS in India and other developing countries with similar socio-economic conditions.


Author(s):  
Savannah Wunderlich ◽  
Sarah St. George Freeman ◽  
Luisa Galindo ◽  
Casey Brown ◽  
Emily Kumpel

2021 ◽  
pp. 100107
Author(s):  
DavidD.J. Meyer ◽  
J. Khari ◽  
Andrew J. Whittle ◽  
Alexander H. Slocum

2021 ◽  
pp. 117372
Author(s):  
Carolina Calero Preciado ◽  
Stewart Husband ◽  
Joby Boxall ◽  
Gonzalo del Olmo ◽  
Víctor Soria-Carrasco ◽  
...  

Author(s):  
R. Farmani ◽  
Joe Dalton ◽  
Bambos Charalambous ◽  
Elizabeth Lawson ◽  
Sarah Bunney ◽  
...  

Abstract There is limited information about the current state of intermittent water supply (IWS) systems at the global level. A survey was carried out by the Intermittent Water Supply Specialist Group of the International Water Association (IWA IWS SG) to better understand the current state of these systems and challenges that water companies may have faced under COVID-19 pandemic and to capture successful management strategies applied by water utilities. The survey consisted of three parts: (1) general information about IWS systems, (2) current state of IWS and (3) resilience of IWS under COVID-19 conditions, as well as some questions about potential interventions in order to improve system performance in general and under future uncertain conditions. The survey responses were evaluated based on the Safe & SuRe resilience framework, assessing measures of mitigation, adaptation, coping and learning, and exploring organisational and operational responses of IWS utilities. Infrastructure capacity and water resources availability were identified as the main causes of intermittency in most water distribution systems, while intermittent electricity was considered as the main external cause. Participants indicated that some risk assessment process was in place; however, COVID-19 has surpassed any provisions made to address the risks. Lessons learnt highlighted the importance of financial resources, e-infrastructure for efficient system operation and communication with consumers, and the critical role of international knowledge transfer and the sharing of best practice guidelines for improving resilience and transitioning towards continuous water supply.


2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinely employed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. The core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract BackgroundUnderstanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinelyemployed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. ResultsThe core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found alongthe distribution systems. The shift in microbial community structure from source to point of uselocations were influenced by factors such as residual free chlorine, intermittent water supply andlong-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household.ConclusionsThe complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


Sign in / Sign up

Export Citation Format

Share Document