traffic tunnel
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Lei Li ◽  
Ke Lei

When a traffic tunnel passes through special strata such as soft rock with high geo-stress, expansive rock, and fault fracture zones, the traditional supporting structure is often destroyed due to complicated loads, which threatens the construction and operation safety of tunnel engineering. Concrete-filled steel tubular (CFST) structure gives full play to the respective advantages of steel and concrete and has better bearing capacity and economic benefits than traditional support structure, which has achieved good results in some underground engineering applications. In order to promote the application of CFST in the construction of traffic tunnels with complex geological conditions and improve the bearing capacity of the initial supporting structure of tunnels, the influencing factors of the bearing capacity of CFST arch were studied by numerical simulation. The main achievements are as follows: (1) The load-displacement curves of CFST members under different material parameters are basically consistent. CFST members have significant restrictions on displacement in the elastic stage and have high ultimate bearing capacity. Although the bearing capacity decreases obviously after reaching the peak, it shows good extension performance. (2) The height of the steel tube section, the thickness of the steel tube wall and the grade of the core concrete have an approximately linear positive correlation with the bearing capacity of CFST arch, but the influence of these three factors on the bearing capacity of CFST arch decreases in turn, and when the grade of core concrete increases above C50, it has no significant effect on the bearing capacity of members.


2020 ◽  
Vol 10 (7) ◽  
pp. 2458 ◽  
Author(s):  
Xiang Li ◽  
Timothy R. Dallmann ◽  
Andrew A. May ◽  
Albert A. Presto

Emissions of gaseous and particulate pollutants from on-road gasoline and diesel vehicles were measured in a traffic tunnel under real-world driving conditions. Emission factors were attributed to gasoline and diesel vehicles using linear regression against the fraction of fuel consumed by diesel vehicles (% fuelD). We measured 67% higher NOx emissions from gasoline vehicles in winter than in spring (2 versus 1.2 g NO2 kg fuel−1). Emissions of CO, NOx, and particulate matter from diesel vehicles all showed impacts of recent policy changes to reduce emissions from this source. Comparison of our measurements to those of a previous study ~10 years prior in a nearby traffic tunnel on the same highway showed that emission factors for both gasoline and diesel vehicles have fallen by 50–70%. To further confirm this long-term trend, we summarized emission factors measured in previous tunnel studies in the U.S. since the 1990s. More restrictive emission standards are effective at reducing emissions from both diesel and gasoline vehicles, and decreases in observed emissions can be mapped to specific vehicle control policies. The trend of diesel-to-gasoline emission factor ratios revealed changes in the relative importance of vehicle types, though fuel-specific emission factors of NOx and elemental carbon (EC) are still substantially larger (~5–10 times) for diesel vehicles than gasoline vehicles.


2019 ◽  
Vol 10 (6) ◽  
pp. 1873-1883 ◽  
Author(s):  
Zhe Dong ◽  
Nan Jiang ◽  
Shiguang Duan ◽  
Li Zhang ◽  
Shengli Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document