evaporation losses
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Sofiane Gheriani ◽  
Noureddine MEZA ◽  
Djamel BOUTOUTAOU

Abstract In recent years, agriculture development in South-eastern Algeria progressed rapidly which increased the demand for agricultural products. Given that this region is characterized by hard agro-climatic conditions, irrigation seems to be a necessary factor for ensuring optimal development and high agricultural production. Like many irrigation technics widely used, sprinkler irrigation performance was considerably affected by these conditions, mainly evaporation, which causes water losses. This study aims to propose an adequate mathematical model predicting wind drift and evaporation losses under different weather conditions resume by the complex indicator of climatic intensity (ɸ). Results showed that complex indicators of climatic intensity, were significant factors affecting the wind drift and evaporation losses, puissance relationship between wind drift and evaporation losses, and complex indicators of climatic intensity, obtained model are adopted can be useful tools in the determination of the overall losses in terms of environmental conditions (air temperature, relative humidity, and wind speed). Totally 25 measure samples were used for training the model, and 15 measure samples for testing and validation of the model. The developed model for the WDEL modeling shows high good performance with a coefficient of determination (R2) = 0.808, mean squared error (RMSE) = 3.39%, and Mean Absolute Error MAE = 8.41%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qazi U. Farooq ◽  
Muhammad T. Naqash ◽  
Abdelkader T. Ahmed ◽  
Bilal A. Khawaja

The Arabian Peninsula is an arid zone with a hot desert climate and severe water scarcity. The low humidity, elevated ambient temperatures, and high evaporation rates in the region deemed conventional surface irrigation unsustainable. The IoT-based subsurface smart irrigation systems can be essentially developed for these regions to avoid surface evaporation losses. In this research, the sandy soil conditions of western Saudi Arabia have been considered in numerical simulations to evaluate the performance of a subsurface smart irrigation system. The influence zone of saturation generated by subsurface diffusers in the target root region has been analysed for two different types of sandy soils. The simulation results generated by the COMSOL Multiphysics program reveal that the subsurface smart irrigation system can be effectively applied to simultaneously manage the target root zone at the ideal saturated conditions and prevent surface evaporation losses.


2021 ◽  
Author(s):  
Lulu Che ◽  
Dongdong Liu ◽  
Dongli She

Abstract AimsSoil water deficit in karst mountain lands is becoming an issue of concern owing to porous, fissured, and soluble nature of underlying karst bedrock. It is important to identify feasible methods to facilitate soil water preservation in karst mountainous lands. This study aims to seek the possibility of combined utilization of moss colonization and biochar application to reduce evaporation losses in carbonate-derived laterite.MethodsThe treatments of the experiments at micro-lysimeter included four moss spore amounts (0, 30, 60, and 90 g·m−2) and four biochar application levels (0, 100, 400, and 700 g·m−3). The dynamics of moss coverage, characteristics of soil surface cracks and surface temperature field were identified. An empirical evaporation model considering the interactive effects of moss colonization and biochar application was proposed and assessed.ResultsMoss colonization reduced significantly the ratio of soil desiccation cracks. Relative cumulative evaporation decreased linearly with increasing moss coverage under four biochar application levels. Biochar application reduced critical moss coverage associated with inhibition of evaporation by 33.26%-44.34%. The empirical evaporation model enabled the calculation of soil evaporation losses under moss colonization and biochar application, with the R2 values ranging from 0.94 to 0.99.Conclusions Our result showed that the artificially cultivated moss, which was induced by moss spores and biochar, decreased soil evaporation by reducing soil surface cracks, increasing soil moisture and soil surface temperature.Moss colonization and biochar application has the potential to facilitate soil moisture conservation in karst mountain lands.


2021 ◽  
Vol 60 ◽  
pp. 102483
Author(s):  
David Quiroz ◽  
Jonah M. Greene ◽  
John McGowen ◽  
Jason C. Quinn

Author(s):  
D. S. Kopitsyn ◽  
P. A. Gushchin ◽  
A. A. Panchenko ◽  
F. V. Timofeev ◽  
D. N. Sokolov ◽  
...  

Author(s):  
Samuel Dare OLUWAGBAYIDE ◽  
Olugbenga FASANU ◽  
Ajayi Johnson OLORUNTADE

Under the prevailing climate change the world is currently facing, efficient irrigation water management is essential to ensure food security, especially in countries with similar climate to Nigeria. Hence, this study was undertaken at the Research Farm of Federal Polytechnic, Ilaro, Ogun State, Nigeria to evaluate evaporation losses during sprinkler irrigation between March and July 2019. Experiments were performed using 360 rotating sprinkler and single nozzle of diameter 3 mm, while due cognizance was taken of the prevailing climatic conditions. Three operating pressures, namely, 50 kPa, 100 kPa and 150 kPa, representing low pressure, medium pressure and high pressure, respectively, were used. The results showed that operating pressures influence droplet sizes, droplet heights and flow rate during the experiment. In addition, it was observed that at operating pressures of 50 kPa, 100 kPa and 150 kPa, mean percentage of evaporation losses were 8.88%, 13.21% and 16.46%, respectively, indicating that evaporation losses increased with increasing operating pressure. Further analysis showed that percentage evaporation losses increased at higher relative humidity, thereby emphasizing the predominance of air temperature and wind velocity as climatic variable influencing sprinkler evaporation losses. The relationship between wind velocity (Vw ) and air temperature (Ta) and to predict evaporation losses (E ) was a function of E = 7.968Vw + 0.393Ta – 19.977. Therefore, it was concluded that, both climatic factors and operating pressures influence the rate of evaporation losses during sprinkler irrigation, adequate attention should be paid to variation of climatic variables since sprinklers are sold with their specified operating pressures.


Author(s):  
Emil Abdullayev Emil Abdullayev

Oil tanks must meet the requirements of low evaporation losses, as well as durability and longevity. Oil tanks are made of steel and non-metal structures of different materials. Steel oil tanks are small (up to 2000 Pa), high (up to 70,000 Pa) and atmospheric pressure due to the additional pressure in the gas phases. Due to their design, steel oil tanks are vertical cylindrical, horizontal cylindrical, drip-shaped and trench-type. Vertical cylindrical oil tanks are the most common and are mainly conical, spherical, pantone, floating lid. Pantone and floating oil tanks - used to reduce evaporation losses during oil storage. The pantone installed in the oil tank with a capacity of 20,000 m3 consists of a steel floor made of a 4 mm thick layer of steel and a ring with two lids welded along its perimeter at a distance of 2.8 m from each other. These ribs provide rigidity to the pontoon during movement, as well as a reserve swimming position when the middle part of the panto sinks. The annular ribs are connected at a certain distance from each other (up to 1/48 of the circumference) by radial ribs. The annular and radial ribs are welded to the floor of the pantone with a complete seam. Keywords: cover construction, oil storage terminal, oil tanks volume, determination of the coating structure.


2021 ◽  
Vol 596 ◽  
pp. 126142 ◽  
Author(s):  
Wei Tian ◽  
Xiaomang Liu ◽  
Kaiwen Wang ◽  
Peng Bai ◽  
Changming Liu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document