network architectures
Recently Published Documents


TOTAL DOCUMENTS

1707
(FIVE YEARS 681)

H-INDEX

52
(FIVE YEARS 11)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-33
Author(s):  
Mark Niklas Müller ◽  
Gleb Makarchuk ◽  
Gagandeep Singh ◽  
Markus Püschel ◽  
Martin Vechev

Formal verification of neural networks is critical for their safe adoption in real-world applications. However, designing a precise and scalable verifier which can handle different activation functions, realistic network architectures and relevant specifications remains an open and difficult challenge. In this paper, we take a major step forward in addressing this challenge and present a new verification framework, called PRIMA. PRIMA is both (i) general: it handles any non-linear activation function, and (ii) precise: it computes precise convex abstractions involving multiple neurons via novel convex hull approximation algorithms that leverage concepts from computational geometry. The algorithms have polynomial complexity, yield fewer constraints, and minimize precision loss. We evaluate the effectiveness of PRIMA on a variety of challenging tasks from prior work. Our results show that PRIMA is significantly more precise than the state-of-the-art, verifying robustness to input perturbations for up to 20%, 30%, and 34% more images than existing work on ReLU-, Sigmoid-, and Tanh-based networks, respectively. Further, PRIMA enables, for the first time, the precise verification of a realistic neural network for autonomous driving within a few minutes.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Nikita Andriyanov ◽  
Ilshat Khasanshin ◽  
Daniil Utkin ◽  
Timur Gataullin ◽  
Stefan Ignar ◽  
...  

Despite the great possibilities of modern neural network architectures concerning the problems of object detection and recognition, the output of such models is the local (pixel) coordinates of objects bounding boxes in the image and their predicted classes. However, in several practical tasks, it is necessary to obtain more complete information about the object from the image. In particular, for robotic apple picking, it is necessary to clearly understand where and how much to move the grabber. To determine the real position of the apple relative to the source of image registration, it is proposed to use the Intel Real Sense depth camera and aggregate information from its depth and brightness channels. The apples detection is carried out using the YOLOv3 architecture; then, based on the distance to the object and its localization in the image, the relative distances are calculated for all coordinates. In this case, to determine the coordinates of apples, a transition to a symmetric coordinate system takes place by means of simple linear transformations. Estimating the position in a symmetric coordinate system allows estimating not only the magnitude of the shift but also the location of the object relative to the camera. The proposed approach makes it possible to obtain position estimates with high accuracy. The approximate root mean square error is 7–12 mm, depending on the range and axis. As for precision and recall metrics, the first is 100% and the second is 90%.


Technologies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Christos Sevastopoulos ◽  
Stasinos Konstantopoulos ◽  
Keshav Balaji ◽  
Mohammad Zaki Zadeh ◽  
Fillia Makedon

Training on simulation data has proven invaluable in applying machine learning in robotics. However, when looking at robot vision in particular, simulated images cannot be directly used no matter how realistic the image rendering is, as many physical parameters (temperature, humidity, wear-and-tear in time) vary and affect texture and lighting in ways that cannot be encoded in the simulation. In this article we propose a different approach for extracting value from simulated environments: although neither of the trained models can be used nor are any evaluation scores expected to be the same on simulated and physical data, the conclusions drawn from simulated experiments might be valid. If this is the case, then simulated environments can be used in early-stage experimentation with different network architectures and features. This will expedite the early development phase before moving to (harder to conduct) physical experiments in order to evaluate the most promising approaches. In order to test this idea we created two simulated environments for the Unity engine, acquired simulated visual datasets, and used them to reproduce experiments originally carried out in a physical environment. The comparison of the conclusions drawn in the physical and the simulated experiments is promising regarding the validity of our approach.


2022 ◽  
pp. 1-27
Author(s):  
Clifford Bohm ◽  
Douglas Kirkpatrick ◽  
Arend Hintze

Abstract Deep learning (primarily using backpropagation) and neuroevolution are the preeminent methods of optimizing artificial neural networks. However, they often create black boxes that are as hard to understand as the natural brains they seek to mimic. Previous work has identified an information-theoretic tool, referred to as R, which allows us to quantify and identify mental representations in artificial cognitive systems. The use of such measures has allowed us to make previous black boxes more transparent. Here we extend R to not only identify where complex computational systems store memory about their environment but also to differentiate between different time points in the past. We show how this extended measure can identify the location of memory related to past experiences in neural networks optimized by deep learning as well as a genetic algorithm.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianyu Wang ◽  
Shi-Yuan Ma ◽  
Logan G. Wright ◽  
Tatsuhiro Onodera ◽  
Brian C. Richard ◽  
...  

AbstractDeep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10−19 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.


Author(s):  
Ivan Stebakov ◽  
Alexey Kornaev ◽  
Sergey Popov ◽  
Leonid Savin

The paper deals with the application of deep learning methods to rotating machines fault diagnosis. The main challenge is to design a fault diagnosis system connected with multisensory measurement system that will be sensitive and accurate enough in detecting weak changes in rotating machines. The experimental part of the research presents the test rig and results of high-speed multisensory measurements. Six states of a rotating machine, including a normal one and five states with loosened mounting bolts and small unbalancing of the shaft, are under study. The application of deep network architectures including multilayer perceptron, convolutional neural networks, residual networks, autoencoders and their combination was estimated. The deep learning methods allowed to identify the most informative sensors, then solve the anomaly detection and the multiclass classification problems. An autoencoder based on ResNet architecture demonstrated the best result in anomaly detection. The accuracy of the proposed network is up to 100% while the accuracy of an expert is up to 65%. A one-dimensional convolutional neural network combined with a multilayer perceptron that contains a pretrained encoder demonstrated the best result in multiclass classification. The detailed fault detection accuracy with the determination of the specific fault is 83.3%. The combinations of known deep network architectures and application of the proposed approach of pretraining of the encoders together with using a block of inputs for one prediction demonstrated high efficiency.


Author(s):  
Siddharth Mishra-Sharma

Abstract Astrometry---the precise measurement of positions and motions of celestial objects---has emerged as a promising avenue for characterizing the dark matter population in our Galaxy. By leveraging recent advances in simulation-based inference and neural network architectures, we introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets. Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population and more favorable scaling with measurement noise compared to existing approaches based on two-point correlation statistics, establishing machine learning as a powerful tool for characterizing dark matter using astrometric data.


Author(s):  
Diego Alberici ◽  
Francesco Camilli ◽  
Pierluigi Contucci ◽  
Emanuele Mingione

Abstract In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails.


Sign in / Sign up

Export Citation Format

Share Document