low reynolds numbers
Recently Published Documents


TOTAL DOCUMENTS

1568
(FIVE YEARS 234)

H-INDEX

75
(FIVE YEARS 8)

2022 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Abel Arredondo-Galeana ◽  
Aristides Kiprakis ◽  
Ignazio Maria Viola

Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles.


2022 ◽  
Author(s):  
Israel Bron Simplicio ◽  
Giovanni F. Nino ◽  
Robert Breidenthal

Author(s):  
Ishfaq Fayaz ◽  
Syeeda Needa Fathima ◽  
Y.D. Dwivedi

The computational investigation of aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures.The bioinspired airfoil design is planned to serve as the main-wing for low-reynolds number aircrafts such as (MAV)micro air vechiles.The dependency of reynolds number on aerodynamics could be obtained at low reynolds numbers.The result of this experiment shows the owl-like airfoil is having high lift performance at very low speeds and in various wind conditions.One of the unique feature of owl airfoil is a separation bubble on the pressure side at low angle of attack.The separation bubble changes location from the pressure side to suction side as the AOA (angle of attack) increases. The reynolds number dependancy on the lift curve is insignificant,although there’s difference in drag curve at high angle of attacks.Eventually, we get the geometric features of the owl like airfoil to increase aerodynamic performance at low reynolds numbers.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 459
Author(s):  
Vadim Lemanov ◽  
Vladimir Lukashov ◽  
Konstantin Sharov

An experimental study of spatially localized very large-scale motion superstructures, propagating in a jet of carbon dioxide at low Reynolds numbers, was carried out. A hot-wire anemometer and a high-speed 2D PIV with a frequency of 7 kHz were used as measuring instruments. Such a puff-type superstructure in a jet with a longitudinal dimension of up to 20–30 nozzle diameters are initially formed in the jet source—a long tube in a laminar-turbulent transition mode (without artificial disturbances). It is shown that this regime with intermittency in time, when part of the time flow is laminar and the other part of time is turbulent, exists both at the exit from the nozzle and in the near field of the jet. Thus, the structural stability of such turbulent superstructures in the near field of the jet was found. Despite the large longitudinal scale, these formations have a transverse dimension of the order of several nozzle diameters. These structures have a complex internal topology, that is, superstructures are a conglomeration of vortices of different sizes from macroscale to microscale. Using the example of diffusion combustion of methane in air, it is demonstrated that in reacting jets, the existence of such large localized perturbations is a powerful physical mechanism for a global change in the flame topology. At the same time, the presence of a cascade of vortices of different sizes in the puff composition can lead to fractal deformation of the flame front.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Maryam Shahab ◽  
Shams Ul-Islam ◽  
Ghazala Nazeer

In this study, the influence of the T-shaped control plate on the fluid flow characteristics around a square cylinder for a low Reynolds numbers flow is systematically presented. The introduction of upstream attached T-shaped control plate is novel of its kind as T-shaped control plate used for the first time rather than the other passive control methods available in the literature. The Reynolds numbers (Re) are chosen to be Re = 100, 150, 200, and 250, and the T-shaped control plate of the same width with varying length is considered. A numerical investigation is performed using the single-relaxation-time lattice Boltzmann method. The numerical results reveal that there exists an optimum length of T-shaped control plate for reducing fluid forces. This optimum length was found to be 0.5 for Re = 100, 150, and 200 and 2 for Re = 250. At this optimum length, the fluctuating drag forces acting on the cylinder are reduced by 134%, 1375, 133%, and 136% for Re = 100, 150, 200, and 250, respectively. Instantaneous and time-averaged flow fields were also presented for some selected cases in order to identify the three different flow regimes around T-shaped control plate and square cylinder system.


2021 ◽  
pp. 0309524X2110550
Author(s):  
Moutaz Elgammi ◽  
Tonio Sant ◽  
Atiyah Abdulmajid Ateeah

Modeling of the flow over aerofoil profiles at low Reynolds numbers is difficult due to the complex physics associated with the laminar flow separation mechanism. Two major problems arise in the estimation of profile drag: (1) the drag force at low Reynolds numbers is extremely small to be measured in a wind tunnel by force balance techniques, (2) the profile drag is usually calculated by pressure integration, hence the skin friction component of drag is excluded. In the present work, three different 4-digit NACA aerofoils are investigated. Measurements are conducted in an open-ended subsonic wind tunnel, while numerical work is performed by time Reynolds-averaged Navier Stokes (RANS) coupled with the laminar-kinetic-energy ( K-kl-w) turbulence model. The influence of the flow separation bubbles and transition locations on the profile drag is discussed and addressed. This paper gives important insights into importance of measurements at low Reynolds numbers for better aerodynamic loads predictions.


Sign in / Sign up

Export Citation Format

Share Document