dna cryptography
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 46)

H-INDEX

7
(FIVE YEARS 1)

This research proposes a tweaked scheme based on DNA fragment assembly to improve protection over insecure channel. The proposed procedure utilizes binary coding to change over an underlying plaintext into a reference DNA arrangement to deal with the fragmentation. DNA fragment key expansion is applied over the reference DNA sequence to make the short-chain fragments. The redundancy in the long-chain of reference DNA is removed using DNA fragment assembly. A look-up table is generated to store the binary values of overlapped fragments to be reassembled during the encryption and decryption processes to prevent artefacts. Also, it is used in an overlapped sequence to counteract cipher decomposition. The results and comparisons demonstrate that the proposed scheme can balance the three most important characteristics of any DNA masking scheme: payload, capacity, and BPN. Moreover, the potential for cracking the proposed tweaked method is more complex than the current strategies.


Author(s):  
Harishchandra Dubey ◽  
Rabindra Kumar Barik ◽  
Chittaranjan Pradhan ◽  
Pratyusa Mukherjee

2021 ◽  
Author(s):  
Adithya B. ◽  
Santhi G.

Information protection and secrecy are major concerns, especially regarding the internet’s rapid growth and widespread usage. Unauthorized database access is becoming more common and is being combated using a variety of encrypted communication methods, such as encryption and data hiding. DNA cryptography and steganography are used as carriers by utilizing the bio-molecular computing properties that have become more common in recent years. This study examines recently published DNA steganography algorithms, which use DNA to encrypt confidential data transmitted through an insecure communication channel. Several DNA-based steganography strategies will be addressed, with a focus on the algorithm’s advantages and drawbacks. Probability cracking, blindness, double layer of security, and other considerations are used to compare steganography algorithms. This research would help and create more effective and accurate DNA steganography strategies in the future.


Author(s):  
Arsha Kolate, Et. al.

Securing information is the most important need of not only the business world but also it’s highly essential in all the other major sectors. The secured data storage capacity along with security during data transit is also an important factor. In this paper DNA based security technique is proposed as an information carrier, the new data securing method can be adopted by harnessing the advantages of DNA based AES. This technique will provide multilayer security. The proposed system aims to secure transactional data during communication as it is required when message or data transfer between sender and receiver should be confidential along with integrity and availability.AS the data hiding needs a carrier to hold the data, therefore in order to enhance data security and make the data more confidential effective encryption algorithm is proposed using DNA cryptography. DNA molecules, holds an ability to store, process and transfer data, stimulates the notion of DNA cryptography. This amalgamation of the chemical features of genetic DNA structures along with cryptography confirms the non-vulnerable communication. The current features with reference to DNA cryptography are reviewed and presented here.


Sign in / Sign up

Export Citation Format

Share Document