compression cycle
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 61)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 1216 (1) ◽  
pp. 012014
Author(s):  
R Uanov ◽  
A S Begimbetova

Abstract The article deals with the analysis of methods for assessing the energy efficiency of data centers according to the Power Usage Effectiveness method. The demand for data centers which consumes a large amount of electricity is growing with the growth of digitalization and the accumulation of big data in the network. The energy consumption of the cooling system for the machine room accounts for a significant part of the operating costs of the building. Free cooling in a refrigeration system reduces energy consumption much more than operating systems with a vapor-compression cycle. In 2006 according to The Green Grid, the assessment method of Power Usage Effectiveness has become an international standard for measuring energy efficiency and is widely used in the design and operation of data centers. In this regard, the operation principles of free-cooling chillers are considered. The calculation example of the system payback in free-cooling is also given.


Author(s):  
Wibowo Kusbandono ◽  

The purpose of this research is (a) to design and assemble a steam compression cycle cooling machine using the main components on the market (b) to obtain the characteristics of the cooling engine, which includes the Coefficient of Performance (COP) and the efficiency of the cooling engine. The research was conducted experimentally in the laboratory. The refrigeration machine works by using a steam compression cycle, with the main components: a compressor, an evaporator, a capillary tube and a condenser. The compressor power is 1/6 PK, while the other main components are adjusted to the size of the compressor power. The refrigerant used is R134a. Variations of the research were carried out on the condition of the refrigerant pipe located between the compressor and condenser: (a) without being submerged in water (b) submerged in 0.50 liters of water and (c) submerged in 0.75 liters of water. The results of the study provide information that the water immersion in the refrigerant pipe which is located between the compressor and condenser affects the COP value and the efficiency of the refrigeration machine. Consecutively (1) without being submerged in water, the COP value is 2.45 and the efficiency is 0.64 (2) submerged in liter of water, the COP value is 2.41 and the efficiency is 0.62 (3) submerged in liter of water, the value COP is 2.34 and efficiency is 0.60.


Author(s):  
Ahmed A. Altohamy ◽  
M.A. Sharafeldin ◽  
M.A. Abdelrahman ◽  
Ahmed A.A. Attia ◽  
Ismail M.M. Elsemary

2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.


Sign in / Sign up

Export Citation Format

Share Document