cyclopterus lumpus
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 64)

H-INDEX

22
(FIVE YEARS 5)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 130
Author(s):  
Setu Chakraborty ◽  
Nardos T. Woldemariam ◽  
Tina Visnovska ◽  
Matthew L. Rise ◽  
Danny Boyce ◽  
...  

MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.


Author(s):  
Melissa K. Holborn ◽  
Anthony L. Einfeldt ◽  
Tony Kess ◽  
Steve J. Duffy ◽  
Amber M. Messmer ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259725
Author(s):  
Even Bysveen Mjølnerød ◽  
Hanne Katrine Nilsen ◽  
Snore Gulla ◽  
Andreas Riborg ◽  
Kirsten Liland Bottolfsen ◽  
...  

The bacterium Pseudomonas anguilliseptica has in recent years emerged as a serious threat to production of lumpfish in Norway. Little is known about the population structure of this bacterium despite its association with disease in a wide range of different fish species throughout the world. The phylogenetic relationships between 53 isolates, primarily derived from diseased lumpfish, but including a number of reference strains from diverse geographical origins and fish species, were reconstructed by Multi-Locus Sequence Analysis (MLSA) using nine housekeeping genes (rpoB, atpD, gyrB, rpoD, ileS, aroE, carA, glnS and recA). MLSA revealed a high degree of relatedness between the studied isolates, altough the seven genotypes identified formed three main phylogenetic lineages. While four genotypes were identified amongst Norwegian lumpfish isolates, a single genotype dominated, irrespective of geographic origin. This suggests the existence of a dominant genotype associated with disease in production of lumpfish in Norwegian aquaculture. Elucidation of the population structure of the bacterium has provided valuable information for potential future vaccine development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hajarooba Gnanagobal ◽  
Trung Cao ◽  
Ahmed Hossain ◽  
My Dang ◽  
Jennifer R. Hall ◽  
...  

Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.


Aquaculture ◽  
2021 ◽  
pp. 737576
Author(s):  
Mette Remen ◽  
Armand Moe Nes ◽  
Thor Arne Hangstad ◽  
Perrine Geraudie ◽  
Patrick Reynolds ◽  
...  

2021 ◽  
pp. 100008
Author(s):  
Tatiana N. Ageeva ◽  
Grete Lorentzen ◽  
Heidi A. Nilsen ◽  
Kjersti Lian

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2442
Author(s):  
Hilde Sindre ◽  
Mona C. Gjessing ◽  
Johanna Hol Fosse ◽  
Lene C. Hermansen ◽  
Inger Böckerman ◽  
...  

The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.


Sign in / Sign up

Export Citation Format

Share Document