quantum gravity phenomenology
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 2)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Ana Alonso-Serrano ◽  
Marek Liška

This work is based on the formalism developed in the study of the thermodynamics of spacetime used to derive Einstein equations from the proportionality of entropy within an area. When low-energy quantum gravity effects are considered, an extra logarithmic term in the area is added to the entropy expression. Here, we present the derivation of the quantum modified gravitational dynamics from this modified entropy expression and discuss its main features. Furthermore, we outline the application of the modified dynamics to cosmology, suggesting the replacement of the Big Bang singularity with a regular bounce.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 439
Author(s):  
Carlo Rovelli

I describe two phenomenological windows on quantum gravity that seem promising to me. I argue that we already have important empirical inputs that should orient research in quantum gravity.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Angel Ballesteros ◽  
Giulia Gubitosi ◽  
Flavio Mercati

Recent work showed that κ-deformations can describe the quantum deformation of several relativistic models that have been proposed in the context of quantum gravity phenomenology. Starting from the Poincaré algebra of special-relativistic symmetries, one can toggle the curvature parameter Λ, the Planck scale quantum deformation parameter κ and the speed of light parameter c to move to the well-studied κ-Poincaré algebra, the (quantum) (A)dS algebra, the (quantum) Galilei and Carroll algebras and their curved versions. In this review, we survey the properties and relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes, emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed of light parameters.


Author(s):  
Laurent Freidel ◽  
Jerzy Kowalski-Glikman ◽  
Robert G. Leigh ◽  
Djordje Minic

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Serena Giardino ◽  
Vincenzo Salzano

AbstractThe Generalized Uncertainty Principle (GUP) has emerged in numerous attempts to a theory of quantum gravity and predicts the existence of a minimum length in Nature. In this work, we consider two cosmological models arising from Friedmann equations modified by the GUP (in its linear and quadratic formulations) and compare them with observational data. Our aim is to derive constraints on the GUP parameter and discuss the viability and physical implications of such models. We find for the parameter in the quadratic formulation the constraint $$\alpha ^{2}_{Q}<10^{59}$$ α Q 2 < 10 59 (tighter than most of those obtained in an astrophysical context) while the linear formulation does not appear compatible with present cosmological data. Our analysis highlights the powerful role of high-precision cosmological probes in the realm of quantum gravity phenomenology.


2020 ◽  
Vol 633 ◽  
pp. A143 ◽  
Author(s):  
C. Perennes ◽  
H. Sol ◽  
J. Bolmont

Context. High-energy photons emitted by flaring active galactic nuclei (AGNs) have been used for many years to constrain modified dispersion relations in vacuum encountered in the context of quantum gravity phenomenology. In such studies, done in the GeV–TeV range, energy-dependent delays (spectral lags) are searched for, usually neglecting any source-intrinsic time delay. Aims. With the aim being to distinguish Lorentz invariance violation (LIV) effects from lags generated at the sources themselves, a detailed investigation into intrinsic spectral lags in flaring AGNs above 100 GeV is presented in the frame of synchrotron-self-Compton scenarios for their very-high-energy (VHE) emission. Methods. A simple model of VHE flares in blazars is proposed, allowing to explore the influence of the main physical parameters describing the emitting zones on intrinsic delays. Results. For typical conditions expected in TeV blazars, significant intrinsic lags are obtained, which can dominate over LIV effects, especially at low redshifts, and should therefore be carefully disentangled from any extrinsic lags. Moreover, two main regimes are identified with characteristic spectral lags, corresponding to long-lasting and fast particle acceleration. Conclusions. Such intrinsic spectral lags should be detected with new-generation instruments at VHE such as the Cherenkov Telescope Array which begins operation in a few years. This will provide original constraints on AGN flare models and open a new era for LIV searches in the photon sector.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950236 ◽  
Author(s):  
Andrea Addazi ◽  
Rita Bernabei

We show how non-commutative spacetime models can induce Pauli Exclusion Principle (PEP) forbidden nuclear and atomic transitions. We focalize our analysis on one of the most popular instantiations of non-commutativeness: [Formula: see text]-Poincaré model, based on the Groenewold–Moyal plane algebra. We show that PEP violating transitions induced by [Formula: see text]-Poincaré have an energy scale and angular emission dependence. PEP violating transitions in nuclear and atomic systems can be tested with very high accuracy in underground laboratory experiments such as DAMA/LIBRA and VIP(2). We derive that the Equivalence Principle assumed [Formula: see text]-Poincaré model can be already ruled-out until the Planck scale, from nuclear transitions tests by DAMA/LIBRA experiment.


Sign in / Sign up

Export Citation Format

Share Document