central segregation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5262
Author(s):  
Liping Wu ◽  
Jianguo Zhi ◽  
Jiangshan Zhang ◽  
Bo Zhao ◽  
Qing Liu

The effects of Cerium (Ce) were studied on the casting slab quality, microstructure, and inclusion evolution of cryogenic vessel steel. An optical metallographic microscope, scanning electron microscope, energy dispersive spectrometer, and Thermo-calc thermodynamic software were used for characterization and analysis. The results indicated that the central segregation was significantly improved after adding Ce and reached the lowest level when the content of Ce was 0.0009 wt.%. Meanwhile, the presence of Ce reduces the size of ferrite and improves pearlite morphology. Ce also enables the modification of Al2O3 and MnS + Ti4C2S2 inclusions into ellipsoid CeAlO3 and spherical Ce2O2S + Ti4C2S2 composite inclusions, respectively, which are easier to remove. The formed Ce2O2S inclusions are fine and can work as heterogeneous nucleation points to refine the microstructure of steel.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 452
Author(s):  
Dongwei Guo ◽  
Zibing Hou ◽  
Zhiqiang Peng ◽  
Qian Liu ◽  
Jianghai Cao

The statistical correlation was applied to analyze the specific and quantitative correlation relationship between the solidification structure and central segregation along the casting direction in carbon steel billet. On this basis, the segregation formation mechanism of the solute element and related control strategy were investigated. It is found that the equiaxed crystal zone fluctuation along the casting direction determines the fluctuation degree of central segregation. At the same time, the central segregation at a certain position is mostly affected by the equiaxed crystal zone width at the hysteretic position. Moreover, the casting speed can influence the columnar to equiaxed transition (CET) fluctuation along the casting direction by affecting the flow of molten steel in the billet. Overall, the segregation mechanism of solute elements along the casting direction can be summarized into two aspects: First, with the growth of columnar crystals in the initial stage, the segregated solutes are continuously enriched and distributed in the equiaxed crystal zone after CET. The fluctuation of the equiaxed crystal zone will affect the distribution of the enriched solute in the billet and cause the fluctuation of the central segregation. Second, due to the solidification shrinkage at the end of solidification, the solute-enriched liquid phase at the hysteretic position is pumped to the solidification endpoint and forms the central V-shaped segregation. Meanwhile, the stable solidification structure (columnar crystal length or equiaxed crystal zone width) along the casting direction and control measures preceded equiaxed crystal zone formation are beneficial to reduce the central V-shaped segregation.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 76 ◽  
Author(s):  
Fujian Guo ◽  
Xuelin Wang ◽  
Jingliang Wang ◽  
R. D. K. Misra ◽  
Chengjia Shang

The solidification structure and segregation of continuously cast billets produced by different continuous casting processes are investigated to elucidate their effect on segregated bands in hot-rolled section steel. It suggested that segregated spots are mainly observed in the equiaxed crystal zone of a billet. The solidification structure is directly related to superheating and the intensities of secondary cooling. To a certain extent, the ratio of the columnar crystal increases with the increase of superheating and secondary cooling. Moreover, the number of spot segregations decreases with the decrease of the equiaxed crystal ratio. After hot rolling, the segregation spots are deformed to form segregated bands in steels. The severe segregation of Mn in segregated bands corresponds with that in the segregation spots. The elongation ratio and low temperature toughness deteriorate significantly by a high fraction of degenerate pearlite caused by central segregation. With a decrease of central segregation, the total elongation is increased by 10% and the ductile–brittle transition temperature (DBTT) is also reduced from −10 to −40 °C. According to the experimental results, columnar crystal in billets is preferred to effectively reduce the degree of central segregation and further improve low temperature toughness and the elongation ratio.


2019 ◽  
Vol 14 (S351) ◽  
pp. 377-383
Author(s):  
Francesco R. Ferraro

AbstractThe observational properties of a special class of stars (the so-called Blue Straggler stars - BSSs) in Globular Clusters are discussed in the framework of using this stellar population as probe of the dynamical processes occurring in high-density stellar systems. In particular, the shape of the BSS radial distribution and their level of central segregation have been found to be powerful tracers of the level of the dynamical evolution of the hosting cluster, thus allowing the definition of an empirical chronometer able to measure the dynamical age of star clusters.


2018 ◽  
Vol 2 (3) ◽  
pp. 44
Author(s):  
Fei Han ◽  
Haicheng Yu ◽  
Jeffrey Dessau ◽  
Xianghai Chen

The ferrite body is the origin of crack and corrosion initiation of steels. Distribution and density of ferrite in seven steel ingots were examined by light optical microscopy and computational modeling, in the study, to explore the correlation of ferrite formation to chemical composition and the mushy zone temperature in ingot forming. The central segregation phenomenon in ferrite distribution was observed in all the examined steel specimens, except 0Cr17Ni4Cu4Nb stainless steel. No significant difference was found in the distribution and density of ferrite among zones of the surface, ½ radius, and core in neither the risers nor tails of 0Cr17Ni4Cu4Nb ingots. Additionally, fewer ferrites were found in 0Cr17Ni4Cu4Nb compared to other examined steels. The difference of ferrite formation in 0Cr17Ni4Cu4Nb elicited a debate on the traditional models explicating ferrite formation. Considering the compelling advantages in mechanical strength, plasticity, and corrosion resistance, further investigation on the unusual ferrite formation in 0Cr17Ni4Cu4Nb would help understand the mechanism to improve steel quality. In summary, we observed that ferrite formation in steel was correlated with the mushy zone temperature. The advantages of 0Crl7Ni4Cu4Nb in corrosion resistance and mechanical stability could be the result of fewer ferrites being formed and distributed in a scattered manner in the microstructure of the steel.


Author(s):  
Fei Han ◽  
Haicheng Yu ◽  
Jeffrey Dessau ◽  
Xianghai Chen

Ferrite body is the origin of crack and corrosion initiation of steels. Distribution and density of ferrite in seven steel ingots were examined by light optical microscopy and computational modeling in the study to explore the correlation of ferrite formation to chemical composition and mushy zone temperature in ingot forming. The central segregation phenomenon in ferrite distribution was observed in all the examined steel specimens except 0Cr17Ni4Cu4Nb stainless steel. No significant difference was found in distribution and density of ferrite amongst zones of the surface, ½ radius and core in neither risers nor tails of 0Cr17Ni4Cu4Nb ingots. Additionally, fewer ferrite was found in 0Cr17Ni4Cu4Nb compared to other examined steels. The difference of ferrite formation in 0Cr17Ni4Cu4Nb elicited a debate on the traditional models explicating ferrite formation. Considering the compelling advantages in mechanical strength, plasticity and corrosion resistance, further investigation on the unusual ferrite formation in 0Cr17Ni4Cu4Nb would help understand the mechanism to improve steel quality. In summary, we observed that ferrite formation in steel was correlated with mushy zone temperature. The advantages of 0Crl7Ni4Cu4Nb in corrosion resistance and mechanical stability could be resulted from that fewer ferrites formed and distributed in a scattered manner in microstructure of the steel.


Sign in / Sign up

Export Citation Format

Share Document